Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.3.11

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode  

Nguyen, Hung Tai (School of Materials Science and Engineering, Chonnam National University)
Tran, Thi Lan (School of Materials Science and Engineering, Chonnam National University)
Nguyen, Dang Thanh (School of Materials Science and Engineering, Chonnam National University)
Shin, Eui-Chol (School of Materials Science and Engineering, Chonnam National University)
Kang, Soon-Hyung (Department of Chemistry Education, Chonnam National University)
Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University)
Publication Information
Abstract
Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.
Keywords
Photoanodes; Impedance; $TiO_2$; Havriliak-Negami equation; Bisquert TL model;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Gratzel, "Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting," J. Phys. Chem. C, 113 [2] 772-82 (2008).   DOI
2 G. Nogami, "Theory of Capacitance-Voltage Characteristics of Semiconductor Electrodes with Interface States," J. Electrochem. Soc., 133 [3] 525-31 (1986).   DOI
3 M. Madou, F. Cardon, and W. Gomes, "Impedance Measurements at the N-and P-Type GaP Single Crystal Electrode," J. Electrochem. Soc., 124 [10] 1623-27 (1977).   DOI
4 B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, "Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with Co-Pi-coated Hematite Electrodes," J. Am. Chem. Soc., 134 [40] 16693-700 (2012).   DOI
5 M. Tomkiewicz, "Impedance Spectroscopy of Rectifying Semiconductor/Electrolyte Interfaces," Electrochim. Acta, 35 [10] 1631-35 (1990).   DOI
6 J.-S. Lee and D.-Y. Kim, "Space-Charge Concepts on Grain Boundary Impedance of a High-Purity Yttria-Stabilized Tetragonal Zirconia Polycrystal," J. Mater. Res., 16 [9] 2739-51 (2001).   DOI
7 K. S. Cole and R. H. Cole, "Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics," J. Chem. Phys., 9 [4] 341-51 (1941).   DOI
8 S. Havriliak and S. Negami, "A Complex Plane Analysis of ${\alpha}$-Dispersions in Some Polymer Systems," J. Polymer Sci., 14 [1] 99-117 (1966).
9 D. Losee, "Admittance Spectroscopy of Impurity Levels in Schottky Barriers," J. Appl. Phys., 46 [5] 2204-14 (1975).   DOI
10 J.-S. Lee, "A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects," J. Korean Ceram. Soc., 53 [2] 150-61 (2016).   DOI
11 G. Crosbie, "Chemical Diffusivity and Electrical Conductivity in $TiO_2$ containing a Submicron Dispersion of $SiO_2$," J. Solid State Chem., 25 [4] 367-78 (1978).   DOI
12 F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, and P. Salvador, "Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline $TiO_2$/Electrolyte System by Impedance Methods," J. Phys. Chem. B, 106 [2] 334-39 (2002).   DOI
13 M. G. Lee and H. W. Jang, "Photoactivities of Nanostructured ${\alpha}-Fe_2O_3$ Anodes Prepared by Pulsed Electrodeposition," J. Korean Ceram. Soc., 53 [4] 400-5 (2016).   DOI
14 S. Kang, R. C. Pawar, T. J. Park, J. G. Kim, S.-H. Ahn, and C. S. Lee, "Minimization of Recombination Losses in 3D Nanostructured $TiO_2$ Coated with Few Layered $gC_3N_4$ for Extended Photo-response," J. Korean Ceram. Soc., 53 [4] 393-99 (2016).   DOI
15 D.-T. Nguyen, E.-C. Shin, D.-C. Cho, K.-W. Chae, and J.-S. Lee, "Photoelectrochemical performance of ZnO Thin Film Anodes Prepared by Solution Method," Int. J. Hydrogen Energy, 39 [35] 20764-70 (2014).   DOI
16 C.-T. Sah, Fundamentals of Solid State Electronics; World Scientific Publishing Co. Inc, Singapore, 1991.
17 C.-T. Sah, "The Equivalent Circuit Model in Solid-State Electronics III: Conduction and Displacement Currents," Solid-State Electron., 13 [12] 1547-75 (1970).   DOI
18 J. Mizusaki, "Model for Solid Electrolyte Gas Electrode Reaction Kinetics; Key Concepts, Basic Model Construction, Extension of Models, New Experimental Techniques for Model Confirmation, and Future Prospects," Electrochem., 82 [10] 819-29 (2014).   DOI
19 J. Bisquert, "Influence of the Boundaries in the Impedance of Porous Film Electrodes," Phys. Chem. Chem. Phys., 2 [18] 4185-92 (2000).   DOI
20 E.-C. Shin, J. Ma, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, and J. S. Lee, "Deconvolution of Four Transmission-Line-Model Impedances in Ni-YSZ/YSZ/LSM Solid Oxide Cells and Mechanistic Insights," Electrochim. Acta, 188 240-53 (2016).   DOI
21 J. R. Macdonald, LEVM/LEVMW manual ver. 8.12 (June 2013).
22 J. Bisquert, G. Galcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, "Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of $TiO_2$ Nanoporous in Aqueous Solution," J. Phys. Chem. B, 104 [10] 2287-98 (2000).   DOI
23 J. R. Macdonald, "Impedance Spectroscopy," Ann. Biomed. Eng., 20 289-305 (1992).   DOI
24 J.-S. Lee, E.-C. Shin, D.-K. Shin, Y. Kim, P.-A. Ahn, H.-H. Seo, J.-M. Jo, J.-H. Kim, G.-R. Kim, Y.-H. Kim, J.-Y. Park, C.-H. Kim, J.-O. Hong, and K.-H. Hur, "Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors," J. Korean Ceram. Soc., 49 [5] 475-83 (2012).   DOI
25 J. Moon, J.-A. Park, S.-J. Lee, J.-I. Lee, T. Zyung, E.-C. Shin, and J.-S. Lee, "A Physicochemical Mechanism of Chemical Gas Sensors Using an AC Analysis," Phys. Chem. Chem. Phys., 15 [23] 9361-74 (2013).   DOI
26 E.-C. Shin, P.-A. Ahn, H.-H. Seo, and J.-S. Lee, "Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects," J. Korean Ceram. Soc., 53 [5] 511-20 (2016).   DOI
27 G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, "Charge Carrier Mobility and Lifetime of Organic Bulk Heterojunctions Analyzed by Impedance Spectroscopy," Org. Electron., 9 [5] 847-51 (2008).   DOI
28 R. de Levie, "On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects," Electrochim. Acta, 8 [10] 751-80 (1963).   DOI
29 E.-C. Shin, H.-H. Seo, J.-H. Kim, P.-A. Ahn, S. M. Park, Y. W. Lim, S.-J. Kim, C. H. Kim, D. J. Kim, C. K. Hong, G. Seo, and J.-S. Lee, "A New Diagnostic Tool for the Percolating Carbon Network in the Polymer Matrix," Polymer, 54 [3] 999-1003 (2013).   DOI
30 E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J.-H. Yu, J. Mizusaki, and J.-S. Lee, "Polarization Mechanism of High Temperature Electrolysis in a Ni-YSZ/YSZ/LSM Solid Oxide Cell by Parametric Impedance Analysis," Solid State Ionics, 232 80-96 (2013).   DOI
31 J.-S. Lee, J. Jamnik, and J. Maier, "Generalized Equivalent Circuits for Mixed Conductors: Silver Sulfide as a Model System," Monat. Chem. (Chemical Monthly), 140 [9] 1113-19 (2009).   DOI
32 P.-A. Ahn, E.-C. Shin, G.-R. Kim, and J.-S. Lee, "Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena," J. Korean Ceram. Soc., 48 [6] 549-58 (2011).   DOI
33 P.-A. Ahn, E.-C. Shin, J.-M. Jo, J.-H. Yu, S.-K. Woo, and J.-S. Lee, "Mixed Conduction in Ceramic Hydrogen/Steam Electrodes by Hebb-Wagner Polarization in the Frequency Domain," Fuel Cells, 12 [6] 1070-84 (2012).   DOI
34 J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids; John Wiley & Sons, 2004.
35 C. He, Z. Zheng, H. Tang, L. Zhao, and F. Lu, "Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells," J. Phys. Chem. C, 113 [24] 10322-25 (2009).   DOI
36 C. Fabrega, T. Andreu, A. Tarancon, C. Flox, A. Morata, L. CalvoBarrio, and J. Morante, "Optimization of Surface Charge Transfer Processes on Rutile $TiO_2$ Nanorods Photoanodes for Water Splitting," Int. J. Hydrogen Energy, 38 [7] 2979-85 (2013).   DOI
37 F. L. Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, and K. Sivula, "Passivating Surface States on Water Splitting Hematite Photoanodes with Alumina Overlayers," Chem. Sci., 2 [4] 737-43 (2011).   DOI
38 H. Seo, K. H. Cho, H. Ha, S. Park, J. S. Hong, K. Jin, and K. T. Nam, "Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition," J. Korean Ceram. Soc., 54 [1] 1-8 (2017).   DOI
39 J.-S. Lee and J. Maier, "High Barrier Effects of (000-1)${\mid}$(000-1) Zinc Oxide Bicrystals: Implication for Varistor Ceramics with Inversion Boundaries," J. Mater. Res., 20 [8] 2101-9 (2005).   DOI
40 Z. Li, C. Yao, Y. Yu, Z. Cai, and X. Wang, "Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiber Templated $TiO_2$ Photoanodes," Adv. Mater., 26 [14] 2262-67 (2014).   DOI
41 R. A. Parker, "Static Dielectric Constant of Rutile ($TiO_2$), 1.6-1060 K," Phys. Rev., 124 [6] 1719-22 (1961).   DOI
42 C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, and H. Wang, "Dielectric Relaxations in Rutile $TiO_2$," J. Am. Ceram. Soc., 98 [1] 148-53 (2015).   DOI
43 A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 [5358] 37-8 (1972).   DOI
44 J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, and J.-S. Lee, "Electrical Characterization of Polycrystalline Sodium ${\beta}$-Alumina: Revisited and Resolved," Solid State Ionics, 264 22-35 (2014).   DOI
45 S.-H. Moon, Y. H. Kim, D.-C. Cho, E.-C. Shin, D. Lee, W. B. Im, and J.-S. Lee, "Sodium Ion Transport in Polymorphic Scandium NASICON Analog $Na_3Sc_2(PO_4)_3$ with New Dielectric Spectroscopy Approach for Current-Constriction Effects," Solid State Ionics, 289 55-71 (2016).   DOI
46 S.-H. Moon, D.-C. Cho, D. T. Nguyen, E.-C. Shin, and J.-S. Lee, "A Comprehensive Treatment of Universal Dispersive Frequency Responses in Solid Electrolytes by Immittance Spectroscopy: Low Temperature AgI Case," J. Solid State Electrochem., 19 [8] 2457-64 (2015).   DOI
47 J. Bisquert and F. Fabregat-Santiago, Impedance Spectroscopy: a General Introduction and Application to Dye-Sensitized Solar Cells; CRC Press, Boca Raton, 2010.
48 H. S. Kim, D. T. Nguyen, E.-C. Shin, J.-S. Lee, S. K. Lee, K.-S. Ahn, and S. H. Kang, "Bifunctional Doping Effect on the $TiO_2$ Nanowires for Photoelectrochemical Water Splitting," Electrochim. Acta, 114 159-64 (2013).   DOI
49 J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide; pp. 364, CRC Press, Boca Raton, 2011.
50 P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States; Academic Press, New York, 1992.
51 F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, "Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy," Phys. Chem. Chem. Phys., 13 [20] 9083-118 (2011).   DOI
52 J. Bisquert, "Beyond the Quasistatic Approximation: Impedance and Capacitance of an Exponential Distribution of Traps," Phys. Rev. B, 77 [23] 235203 (2008).   DOI
53 J. Bisquert, "Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer," J. Phys. Chem. B, 106 [2] 325-33 (2002).   DOI
54 F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar, and C. A. Grimes, "High Carrier Density and Capacitance in $TiO_2$ Nanotube Arrays Induced by Electrochemical Doping," J. Am. Chem. Soc., 130 11312-16 (2008).   DOI
55 J. Bisquert, "Comment on Diffusion Impedance and Space Charge Capacitance in the Nanoporous Dye-Sensitized Electrochemical Solar Cell" and "Electronic Transport in Dye-Sensitized Nanoporous $TiO_2$ Solar Cells Comparison of Electrolyte and Solid-State Devices," J. Phys. Chem. B, 107 [48] 13541-43 (2003).   DOI