• Title/Summary/Keyword: confining reinforcement

Search Result 86, Processing Time 0.024 seconds

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.

Behaviors of High-Strength Concrete Columns made with Belite Cement (Belite시멘트를 사용한 고강도 콘크리트 기둥의 거동특성)

  • 변근주;김기수;송하원;최동휴;김동석;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.401-407
    • /
    • 1997
  • Objectives of this study is to investigate experimentally the behaviors of high strength concrete columns made with Belite cement by comparing with those of normal concrete columns. For the Belite high strength concrete columns and normal concrete columns having different core sizes, lateral reinforcement ratios and spacings, the experiment are performed and the behaviors of the columns like the confining effect are analyzed and discussed.

  • PDF

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Experimental Study on the Confining Effects of Various Detailing Methods at Ends of Flexural Shear Walls (전단벽의 양단부 기둥식 보강기법 연구)

  • 김두영;천영수;조순호;최기봉;정하선;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.154-159
    • /
    • 1993
  • To develop the detailing methods at the ends of flexural shear walls. which are satisfying the ductility requirement corresponding to R = 3.5 and capable of improving the consturctibility, tests of ten isolated cantilever shear walls were carried out under the load condition comprising the cyclic lateral and constant vertical loads. major test parameters include the way of detailing and arrangement of transverse reinforcement in the boundary elements at the ends of walls, and placement of vertical reinforcement. From tests, comparable ductile behavior in test specimens incorporating the channel type of open hoops, compared with those incorporating the regular type of closed hoops, was observed.

  • PDF

Experimental Study of Structural Capacity Evaluation of RC T-shape Walls with the Confinement Effect (단부구속 효과에 따른 철근콘크리트 T형 벽체의 구조성능 평가에 관한 실험적 연구)

  • 하상수;윤현도;최창식;오영훈;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.191-196
    • /
    • 2001
  • The structural performance of a shear wall subjected to lateral loads is influenced by many factors, such as sectional shape, aspect ratio, vertical and horizontal reinforcement, lateral confinement and axial compression, etc. This experimental research is focusing to investigate the structural performance of T-shaped walls with different confining reinforcement. Experimental results show that all specimens finally failed by the crushing of the concrete in the compression zone. Although the location and content of the lateral confinement is different, the results are very similar during the negative loading direction where the flange is compressed. However, when flange is subjected to tension, the location and content of the lateral confinement results in a large difference in the structural performance of T-shaped walls. Therefore, selection of location and content of the lateral confinement would be important aspect in the design of the nonsymmetric structural walls.

  • PDF

Design of Transverse Steel Amounts of High Strength Reinforced Tied Columns by Axial Capacity Design Method (내력설계법에 의한 고강도 철근콘크리트 띠철근 기둥의 횡보강근량 산정)

  • 한범석;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.151-156
    • /
    • 2003
  • On the basis of the philosophy that "the compressive axial load capacity after spalling of shell concrete should be maintained as that before spalling" by applying the confinement model of high strength concrete proposed in the previous proceeding paper and equivalent lateral confining pressure considering configurations of transverse reinforcement, the amounts of transverse reinforcement from the compressive capacity design method about high strength reinforced concrete tied columns can be calculated through the formula proposed in this paper. The proposed design equation of transverse steel amounts for high strength reinforced concrete tied columns was quite agreeable with the test results of HSC tied columns conducted by other researchers as well as author.as author.

  • PDF

Composition and Peinforcing Effect of Remolded Short Fiber Reinforced Clay (재성형된 단섬유 보강점토의 구성과 보강효과)

  • 박영곤;장병욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.87-95
    • /
    • 2000
  • A series of consolidated undrained triaxial compression testes were performed to increase field applications of soil admixtures mixed with short fiber. Kaolin clay and three types of fiber were selected and auto cutter was used to obtain reliable length of fibers. Remolded soil specimens were tested for obtaining the basic data to be applied to the reinforcement of soft clay, embankment or barrier and clay liner of wastes landfill etc. Conversion equations from weight to volume of clay mixed with short fiber are introduced and relationships between fiber content and fiber concentration are derived. It is found that reinforcing effect by aspect ratio and mixing ratio of short fiber decreases as confining pressure increases. The best efficient reinforcing effect is given at the aspect ratio of 80~120 and the fiber content of 1.2%~2.4% and the fiber diameter of 0.27mm.

  • PDF

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

Strength and Deformation Characteristics of Geosynthetics-Reinforced Slag Materials (토목섬유로 보강된 슬래그 재료의 전단강도 및 변형 특성)

  • Shin, Dong-Hoon;Lee, Jong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.27-34
    • /
    • 2009
  • In this paper, characteristics of shear strength and deformation of geosynthetics-reinforced slag materials are described. In order to investigate the effect of geosynthetics on shear strength and deformation behavior of slags, when they are reinforced with geosynthetics or geomat such as PET mat, large triaxial tests were performed under consolidated-drained condition. The materials used in the study are real ones as they are in the field, so that the scale effect of samples disappeared. From the large triaxial tests, it was observed that the stress-strain relationship of geosynthetics-reinforced slags shows relatively small dilatancy and weak tendency of strain hardening, compared with that of slags without reinforcement. The shear strength parameters such as apparent cohesion and internal friction angle increase with PET mat reinforcement, consequently result in about 1.2 (for low confining pressure) to 1.4 (for high confining pressure) times of shear strength of un-reinforced sample. Therefore, the adoption of geomat-reinforced slag layers leads to an increase in the factor of safety for embankment design on soft soil formations.

  • PDF

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.