• Title/Summary/Keyword: confined high-strength concrete

Search Result 130, Processing Time 0.025 seconds

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H.;Ekkehard, Fehling;Thai, Duc-Kien;Nguyen, Chau V.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

The Study on High Performance of Offshore Concrete Using Crushed Stone Fines (쇄석미분말을 사용한 해양콘크리트의 고성능화에 관한 연구)

  • Chang, Chun-Ho;Jung, Yong-Wook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of high performance concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, $10{\sim}15%$ of compressive strength is decreased and flowability of high performance concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, $4^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition In the meantime, durability of high performance concrete is excellent, having over 100% of good relative dynamic modulus of elasticity due to fineness of formation mused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, It can be said that the usage of crushed stone fines can control the strength of high performance concrete by replacement and reduce heat of hydration.

  • PDF

Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping

  • Sajedi, Fathollah;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.417-432
    • /
    • 2019
  • This paper presents the results of axial compression testing and numerical modeling on reinforced concrete columns (RCC) with normal concrete (NC) and high-strength concrete (HSC), RCC confined by glass-fiber reinforced plastic pipes (GRP) casing as well as carbon fiber reinforced polymer (CFRP), The major parameters evaluated in the experiments were the effects of concrete type, GRP casing and CFRP wrapping, as well as the number of CFRP layers. 12 cylindrical RCC ($150{\times}600mm$) were prepared and divided into two groups, NC and HSC. Each group was divided into two parts; with and without GRP casing. In each part, one column was without CFRP strengthening layer, a column was wrapped with one CFRP layer and another column with two CFRP layers. All columns were tested under concentrated compression load. Numerical modeling was performed using ABAQUS software and the results of which were compared with experimental findings. A good agreement was found between the results. Results indicated that the utilization of CFRP wrapping and GRP casing improved compression capacity and ductility of RCC. The addition of one and two layer-FRP wrapping increased capacity in the NC group to an average of 18.5% and 26.5% and in the HSC group to an average of 10.2% and 24.8%. Meanwhile, the utilization of GRP casing increased the capacity of the columns by 3 times in the NC group and 2.38 times in the HSC group. The results indicated that although both CFRP wrapping and GRP casing increased confinement, the GRP casing gave more increase capacity and ductility of the RCC due to higher confinement. Furthermore, the confinement effect was higher on NC group.

Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns

  • Mostafa, Mostafa M.A.;Wu, Tao;Liu, Xi;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.583-598
    • /
    • 2021
  • The composite steel reinforced concrete (SRC) columns have been widely used in Structural Engineering due to their good performances. Many studies have been done on the SRC columns' performances, but they focused on the ordinary types with conventional configurations and materials. In this study, nine new types of steel reinforced lightweight aggregate concrete (SRLAC) short columns with cross-shaped (+shaped and X-shaped) steel section were tested under monotonically axial compressive load; the studied parameters included steel section ratio, steel section configuration, ties spacing, lightweight aggregate concrete (LWAC) strength, and longitudinal bars ratio. From the results, it could be found that the specimens with larger ties ratio, concrete strength, longitudinal bars ratio, and steel section ratio achieved great strength and stiffness due to the excellent interaction between the concrete and steel. The well-confined concrete core could strengthen the steel section. The ductility and toughness of the specimens were influenced by the LWAC strength, steel section ratio, and longitudinal bars ratio; in addition, larger ties ratio with smaller LWAC strength led to better ductility and toughness. The load transfer between concrete and steel section largely depends on the LWAC strength, and the ultimate strength of the new types of SRLAC short columns could be approximately predicted, referring to the codes' formulas of ordinary types of steel reinforced concrete (SRC) columns. Among the used codes, the BS-5400-05 led to the most conservative results.

Behavior and Capacity of Compression Lap Splice in Confined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 있는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.389-400
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement and bar size on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. The results of the tests with bar diameters of 22 and 29 mm show that there is no size effect of bar diameter on compression lap splice. Bond strength of small bar diameter may increase. However, large diameters of re-bars are used in compression member and the size effect of re-bars does not have to be considered in compression lap splice. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond. Because the stresses developed by bond in compression splice with transverse reinforcement are nearly identical to or less than those in tension splice with same transverse reinforcement, strength increment of compression splice is attributed to end bearing only.

Evaluation of Shear Performance for CSB (Confined Socket Bolt) Shear Connector (CSB (Confined Socket Bolt) 전단연결재의 전단 성능 평가 )

  • Seung-Hyeon Hwang;Ju-Hyun Mun;Jong-Kook Hong;Jong-Cheol Jeon;Jae-Il Sim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.8-16
    • /
    • 2023
  • This study evaluated a shear capacity of confined socket-bolt (CSB) shear connector developed for utilizing cast in placed pile (CIP) as a permanent underground wall. The push-out tests were performed in the specimens with different CIP types, CSB shear connector types, L/d, and concrete compressive strengths of concrete pile, and with or without waterproofing at interfaces between CIP and underground wall. Test results showed that the specimens with a H-shaped pile were fractured in the CSB shear connector, while the fracture concentrated in the concrete part of the specimens with a reinforced concrete pile was alleviated as the compressive strength of the concrete pile increased, resulting in the severe fracture of CSB shear connector. The maximum shear capacities of the specimens with high strength bolts and reinforcing bars used as CSB shear connector were approximately 1.22 and 1.20 times higher than those of the specimens with a H-shaped pile, respectively, and 1.10 and 1.16 times higher than those of the specimens with a reinforced concrete pile, respectively. Meanwhile, the maximum shear capacity was not significantly affected by the embedding length of the CSB shear connector and overlapping length of reinforcing bar. The predicted shear capacities calculated from the KDS standards were lower than the measured values of all specimens tested in this study.

Performance Evaluation of Long Span Bridge Columns Strengthened with High-Performance Glass Fiber (고성능 유리섬유로 보강된 해상장대교량 교각의 보강성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Jae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • Researches and studies which have been conducted so far on external confinement of long span concrete columns have mainly concentrated on concentric loading. But, long span bridge concrete columns over the sea are mainly subjected to concentrated axial load, and at the same time lange amount of moment by eccentric load. This paper experimentally investigates the performance of externally confined high-strength concrete columns subjected to loading mechanism and evaluates the effectiveness of two confinement materials carbon fibre and high performance glass fibre. Twelve short columns with the same dimensions were cast and tested Six columns were reinforced with hoop bars, the remaining six columns were reinforced with spiral bars and wrapped with three layers of carbon failure and high performance glass FRP sheets. Test variables considered were the shape of internal reinforcement and strengthening materials according to loading location. The experimental results showed that eccentric load could obviously lower down the maximum failure load of FRP-confined concrete columns, compared with the columns under concentric load. And compared with the carbon FRP-confined reinforced concrete columns, high performance glass FRP-confined columns displayed a higher load capacity and ductility, when tested both concentrically and eccentrically.

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

Properties of the Super Flowing Concrete Using Crushed Stone Fines (쇄석분을 사용한 초유동콘크리트의 특성에 관한 연구)

  • 이승한;정용욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.476-483
    • /
    • 2001
  • 초유동콘크리트는 유동성 증진 및 충전성 향상을 위해 단위분체량을 크게하기 때문에 콘크리트의 고강도화와 수화발열량을 증가시키는 문제점을 가지고 있다. 이에 본 연구는 초유동콘크리트의 강도조절과 수화열 저감을 위해 쇄석분을 이용하여 초유동콘크리트의 강도, 유동성, 내구성능 및 건조수축 특성을 검토하였다. 실험결과 쇄석분은 치환율 10% 증가시마다 무치환시의 압축강도를 약 10~15%씩 감소시키며, 변형계수와 물구속비를 감소시켜 초유동콘크리트의 유동성 향상에 효과적이다. 또한 초유동콘크리트에서 쇄석분 10%치환시 마다 단위시멘트량 감소에 따른 최고 단열온도상승량을 약 4$^{\circ}C$씩 감소시켰다. 반면 건조수축량은 10%치환시 마다 약 5%증가시켰다. 한편 초유동콘크리트의 내구성능은 단위분체량과 유동성향상에 따른 조직의 치밀화로 쇄석분 치환에 관계없이 상대동탄성계수 90%이상으로 우수하게 나타났다. 이와 같이 분체로서 쇄석분 사용은 치환량에 따른 초유동콘크리트의 강도조절이 가능하며 수화발열량을 저감시킬 수 있다. ^ x Super flowing concrete causes high strength and the increase of heat of hydration because of the big unit powder content of concrete to increase flowability and to improve compact of concrete. Therefore, this study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of super flowing concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, 10~15% of compressive strength is decreased and flowability of super flowing concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, 4$^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition. In the meantime, durability of super flowing concrete is excellent, having over 90 % of good relative dynamic modulus of elasticity due to fineness of formation caused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, it can be said that the usage of crushed stone fines can control the strength of super flowing concrete by replacement and reduce heat of hydration.

Nonlinear finite element modeling of FRP-wrapped UHPC columns

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.413-429
    • /
    • 2013
  • The primary aim of this study is to develop a three dimensional finite element (FE) model to predict the axial stress-strain relationship and ultimate strength of the FRP-wrapped UHPC columns by comparing experimental results. The reliability of four selected confinement models and three design codes such as ACI-440, CSA-S806-02, and ISIS CANADA is also evaluated in terms of agreement with the experimental results. Totally 6 unconfined and 36 different types of the FRP-wrapped UHPC columns are tested under monotonic axial compression. The values of ultimate strengths of FRP-wrapped UHPC columns obtained from the experimental results are compared and verified with finite element (FE) analysis results and the design codes mentioned above. The concrete damage plasticity model (CDPM) in Abaqus is utilized to represent the confined behavior of the UHPC. The results indicate that agreement between the test results and the non-linear FE analysis results is highly satisfactory. The CSA-S806-02 design code is considered more reliable than the ACI-440 and the ISIS CANADA design codes to calculate the ultimate strength of the FRP-wrapped UHPC columns. None of the selected confinement models that are developed for FRP-wrapped low and normal strength concrete columns can safely predict the ultimate strength of FRP-wrapped UHPC columns.