DOI QR코드

DOI QR Code

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H. (Division of Construction Computation, Institute for Computational Science, Ton Duc Thang University) ;
  • Ekkehard, Fehling (Faculty of Civil and Environmental Engineering, Institute of Structural Engineering, University of Kassel) ;
  • Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University) ;
  • Nguyen, Chau V. (Institute of Research and Development, Duy Tan University)
  • Received : 2018.06.04
  • Accepted : 2018.08.01
  • Published : 2018.10.10

Abstract

The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

Keywords

Acknowledgement

Supported by : Ton Duc Thang University, Duy Tan University, Sejong University, and Kassel University

References

  1. Aboutaha, R.S. and Machado, R. (1998), "Seismic resistance of steel confined reinforced concrete (SCRC) columns", Struct. Des. Tall Build., 7, 251-260. https://doi.org/10.1002/(SICI)1099-1794(199809)7:3<251::AID-TAL112>3.0.CO;2-J
  2. An, L.H. and Fehling, E. (2017a), "Effect of steel fiber on the behavior of circular steel tube confined UHPC columns under axial loading", Proceedings of the 4th International Conference on Strain-Hardening Cement-Based Composites (SHCC4), Dresden, Germany, September.
  3. An, L.H. and Fehling, E. (2017b), "Experimental study on the compressive behavior of circular steel tube confined UHPC columns", Proceedings of the 16th International Symposium on Tubular Structures (ISTS16), Monash, Australia, December.
  4. An, L.H. and Fehling, E. (2017c), "Test on circular steel tube confined UHPC columns under axial loading", Proceedings of the 3rd International Symposium on Ultra-High Performance Fiber-Reinforced Concrete, UHPFRC 2017 Montpellier, France, October.
  5. An, L.H. and Fehling, E. (2017d), "Analysis of circular steel tube confined UHPC stub columns", Steel Compos. Struct., Int. J., 23(6), 669-682.
  6. An, L.H. and Fehling, E. (2017e), "Assessment of axial stressstrain model for UHPC confined by circular steel tube stub columns", Struct. Eng. Mech., Int. J., 3(3), 371-384.
  7. An, L.H. and Fehling, E. (2017f), "Influence of steel fiber content and type on the uniaxial tensile and compressive behavior of UHPC", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130
  8. An, L.H. and Fehling, E. (2017g), "Numerical study of circular steel tube confined concrete (STCC) stub columns with various concrete strengths", J. Constr. Steel Res., 136, 238-255. https://doi.org/10.1016/j.jcsr.2017.05.020
  9. Architectural Institute of Japan (AIJ) (2001), Recommendation for design and construction of concrete filled steel tubular structures, Japan. [In Japanese]
  10. Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Eng. Struct., 27(7), 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
  11. Blais, P.Y. and Couture, M. (1999), "Precast, Prestressed Pedestrian Bridge: World's First Reactive Powder Concrete Structure", PCI Journal, 44(5), 60-71.
  12. De Oliveira, W.L.A., De Nardin, S., De Cresce El Debs, A.L.H. and El Debs, M.K. (2010), "Evaluation of passive confinement in CFT columns", J. Constr. Steel Res., 66(4), 487-495 https://doi.org/10.1016/j.jcsr.2009.11.004
  13. Ding, F.X., Yu, Z.W., Bai, Y. and Gong, Y.Z. (2011), "Elastoplastic analysis of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 67, 1567-1577. https://doi.org/10.1016/j.jcsr.2011.04.001
  14. Ding, F.X., Tan, L., Liu, X.M. and Wang, L. (2017), "Behavior of circular thin-walled steel tube confined concrete stub columns", Steel Compos. Struct., Int. J., 23(2), 229-238.
  15. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  16. Fehling, E., Bunje, K. and Leutbecher, T. (2004), "Design relevant properties of hardened ultra high performance concrete", Proceedings of the International Symposium on Ultra High Performance Concrete, (Eds. M. Schmidt, E. Fehling, C. Geisenhansluke), Kassel, Germany, September, pp. 327-338
  17. Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T. and Frohlich, S. (2014), Ultra-High Performance Concrete: Fundamental - Design - Example, Wilhelm Ernst & Sohn, Verlag fur Architektur und technische Wissenschaften GmbH & Co. KG, Rotherstrasse 21, 10245 Berlin, Germany.
  18. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  19. Graybeal, B.A. (2005), "Characterization of the behavior of ultrahigh performance concrete", Ph.D. Dissertation; University of Maryland, USA.
  20. Guo, Z. (2014), Principle of Reinforced Concrete. ISBN: 9780128008591
  21. Han, L.H., Yao, G.H., Chen, Z.P. and Yu, Q. (2005), "Experimental behavior of steel tube confined concrete (STCC) columns", Steel Compos. Struct., Int. J., 5(6), 459-84. https://doi.org/10.12989/scs.2005.5.6.459
  22. Han, L.H., Liu, W. and Yang, Y.F. (2008), "Behavior of thin walled steel tube confined concrete stub columns subjected to axial local compression", Thin-Wall. Struct., 46, 155-164. https://doi.org/10.1016/j.tws.2007.08.029
  23. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Development and advanced applications of concrete-filled steel tubular (CFST) structures: members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016
  24. Heimann, M. (2013), "Tragwerkszuverlassigkeit hochbeanspruchter Druckglieder aus ultrahochfestem Beton", Ph.D. Dissertation; Helf 28, Technische Universitat Darmstadt.
  25. Huang, F., Yu, X. and Chen, B. (2012), "The structural performance of axially loaded CFST columns under various loading conditions", Steel Compos. Struct., Int. J., 13(5), 451-471. https://doi.org/10.12989/scs.2012.13.5.451
  26. Johansson, M. (2002), "Composite Action and Confinement Effects in Tubular Steel-Concrete Columns", Ph.D. Dissertation; Department of Structural Engineering, Concrete Structures, Chalmers University of Technology, Goteborg, Sweden.
  27. Liew, J.Y.R. and Xiong, D.X. (2010), "Experimental investiga-tion on tubular columns infilled with ultra-high strength concrete", Tubular Structures XIII, The University of Hong Kong, pp. 637-645.
  28. Liew, J.Y.R. and Xiong, D.X. (2012), "Ultra-high strength concrete filled composite columns for multi-storey building construction", Adv. Struct. Eng., 15(9), 1487-1503. https://doi.org/10.1260/1369-4332.15.9.1487
  29. Liew, J.Y.R. and Xiong, D.X. (2015), Design Guide For Concrete Filled Tubular Members With High Strength Materials to Eurocode 4, Research Publishing, Blk 12 Lorong Bakar Batu, 349568 Singapore.
  30. Liew, J.Y.R., Xiong, M.X. and Xiong, D.X. (2014), "Design of high strength concrete filled tubular columns for tall buildings", Int. J. High-Rise Build., 3(3), 215-221. https://doi.org/10.21022/IJHRB.2014.3.3.215
  31. Liew, J.Y.R., Xiong, M.X. and Xiong, D.X. (2016), "Design of concrete filled tubular beam-columns with high strength steel and concrete", Structures, 8, 215-221.
  32. Liu, J., Zhang, S., Zhang, X. and Guo, L. (2009), "Behavior and strength of circular tube confined reinforced-concrete (CTRC) columns", J. Constr. Steel Res., 65, 1447-1458. https://doi.org/10.1016/j.jcsr.2009.03.014
  33. Liu, J., Zhou, X. and Gan, D. (2016), "Effect of friction on axially loaded stub circular tubed columns", Adv. Struct. Eng., 19(3), 546-559. https://doi.org/10.1177/1369433216630125
  34. O'Shea, M.D. and Bridge, R.Q. (1994), "Test of thin-walled concrete-filled steel tubes", Proceedings of the 12th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO, USA, October, pp. 399-419.
  35. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., ASCE, 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  36. Qi, H., Guo, L., Liu, J., Gan, D. and Zhang, S. (2011), "Axial load behavior and strength of tubed steel reinforced-concrete (SRC) stub columns", Thin-Wall. Struct., 49, 1141-1150.
  37. Richart, F.E., Brandzaeg, A. and Brown, R.L. (1928), "A Study of the Failure of Concrete under Combined Compressive Stresses", Bulletin No. 185; University of Illinois, Engineering Experimental Station, Urbana, IL, USA.
  38. Richart, F.E., Brandzaeg, A. and Brown, R.L. (1929), "Failure of plain and spirally reinforced concrete in compression", Bulletin 190; University of Illinois Engineering Experimental Station, Champaign, IL, USA.
  39. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349.
  40. Schneider, H. (2006), "Zum tragverhalten kurzer, umschnurter, kreisformiger, druckglieder aus ungefasertem UHFB", Ph.D. Dissertation; University of Leipzig, Leipzig, Germany. [In German]
  41. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modeling of concrete filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001
  42. Tue, N.V., Schneider, H., Simsch, G. and Schmidt, D. (2004a), "Bearing capacity of stub columns made of NSC, HSC and UHPC confined by a steel tube", Proceedings of the 1st International Symposium on Ultra High Performance Concrete, Kassel, Germany, March, pp. 339-350.
  43. Tue, N.V., Kuchler, M., Schenck, G. and Jurgen, R. (2004b), "Application of UHPC filled tubes in buildings and bridges", Proceeding of International Symposium on Ultra High Performance Concrete, Kassel, Germany, March, pp. 807-817.
  44. Xiong, D.X. (2012), "Structural behaviour of concrete filled steel tube with high strength materials", Ph.D. Dissertation; National University of Singapore, Singapore.
  45. Xiong, M.X., Xiong, D.X. and Liew, J.Y. (2017), "Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials", Eng. Struct., 136, 494-510.
  46. Yamamoto, T., Kawaguchi, J. and Morino, S. (2000), "Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns", Proceeding of the 14th International Conference on Composite Constructional in Steel and Concrete, Banff, Alberta, Canada, pp. 879-890.
  47. Yu, Q., Tao, Z., Liu, W. and Chen, Z.B. (2010), "Analysis and calculations of steel tube confined concrete (STCC) stub columns", J. Constr. Steel Res., 66(1), 53-64. https://doi.org/10.1016/j.jcsr.2009.08.003
  48. Zhong, S.T. and Miao, R.Y. (1988), "Stress-Strain Relationship and Strength of Concrete Filled Tubes", Proceeding of Engineering Foundation Conference on Composite Constructions, Henniker, NH, USA, pp. 773-785.