• 제목/요약/키워드: conductivity.

검색결과 8,328건 처리시간 0.038초

포논 분산이 열전달 모델에 미치는 영향 (Impact of Phonon Dispersion on Thermal Conductivity Model)

  • 정재동
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.

Thick Graphene Embedded Metal Heat Spreader with Enhanced Thermal Conductivity

  • Park, Minsoo;Chun, Kukjin
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.234-237
    • /
    • 2014
  • In this paper, a copper foil-thick grapheme (thin graphite sheet)-copper foil structure is reported to achieve mechanically strong and high thermal conductive layer suitable for heat spreading components. Since graphene provides much higher thermal conductivity than copper, thick graphene embedded copper layer can achieve higher effective thermal conductivity which is proportional to graphene/copper thickness ratio. Since copper is nonreactive with carbon material which is graphene, chromium is used as adhesion layer to achieve copper-thick graphene-copper bonding for graphene embedded copper layer. Both sides of thick graphene were coated with chromium as an adhesion layer followed by copper by sputtering. The copper foil was bonded to sputtered copper layer on thick graphene. Angstrom's method was used to measure the thermal conductivity of fabricated copper-thick graphene-copper structure. The thermal conductivity of the copper-thick graphene-copper structures is measured as $686W/m{\cdot}K$ which is 1.6 times higher than thermal conductivity of pure copper.

Cu-Sn계 합금의 기계적 성질과 전기전도도에 미치는 P 및 Mg 첨가의 영향 (Influence of P and Mg Additions on the Mechanical Properties and Electrical Conductivity of Cu-Sn Based Alloys)

  • 김정민;박준식;김기태
    • 열처리공학회지
    • /
    • 제20권6호
    • /
    • pp.318-322
    • /
    • 2007
  • The high electrical conductivity Cu-0.15% Sn alloys containing various P contents, and the high conductivity and high strength Cu-0.1% Sn-0.1%Ag alloys with various Mg/P additions were fabricated and their mechanical properties and electrical conductivity were investigated. The electrical conductivity was generally decreased as the P content was increased where as the hardness and strength was shown to increase. When Mg was added to P-containing Cu alloys, the detrimental effect of P on the conductivity was significantly reduced, and TEM observations indicated that the formation of $Mg_3P_2$ phase is responsible for this result.

열전도계수 경험식의 국내 적용성에 관한 평가 (Estimation of Empirical Equation on Thermal Conductivity)

  • 김학승;이장근;김영석;강재모;홍승서
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1151-1155
    • /
    • 2010
  • Frost depth is one of important factors to design roadway structure, and it can be estimated with numerical simulation on thermal distribution through subgrade soils. Thermal conductivity is a key parameter for accurate prediction on thermal distribution, but there are few studies on thermal conductivity of subgrade soils in Korea. Thermal conductivity can be affected by several factors such as dry density, moisture content, and saturation degree based on previous researches. Two empirical equations to estimate thermal conductivity are applied to access the accuracy of these equations with experimental data. Results indicate that the equation can be used to estimate thermal conductivity with proper quartz fraction.

  • PDF

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression

  • Rani, Adila;Nam, Seung-Woong;Oh, Kyoung-Ah;Park, Min
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.90-95
    • /
    • 2010
  • Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.

Application of a geophysical well log technique for determining permeability in borehole

  • Kim Y.;Park J.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.432-436
    • /
    • 2003
  • Geophysical well logging techniques which are useful for delineating permeability of geological formation have been reviewed. A new technique for obtaining permeability using conductivity log technique has been discussed. This conductivity logging technique has been tested by monitoring the conductivity change within the model hole using borehole environment water and incoming-outgoing water of different salinity with constant flow rate by maintaining balance between inflow and outflow. Conductivity variation features depended mainly on flow rate, density contrasts due to salinity and temperature contrasts between fluid within the hole and incoming-outgoing fluid. The results of the experiment show uniform change of fluid conductivity within bore hole with time, and a fairly good correlation between the flow rate and the conductivity change rate. This conductivity logging technique is expected to be an efficient tool for determining permeability.

  • PDF

다공질 ZnO의 전기적 특성, 환원성 가스 감응 특성 및 습도의 영향 (Electrical Conductivity, Flammable Gas Response and Humidity Effect of Pporous ZnO)

  • 윤당혁;최경만
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1283-1291
    • /
    • 1995
  • The electrical conductivity, flammable gas response and their humidity effect of porous ZnO, added with 5wt% corn starch as the fugitive phase, were examined. Porous ZnO showed different conductivity curves during increasing and decreasing temperature, and its electrical conductivity decreased rapidly by desorption of OH- between 20$0^{\circ}C$ and 35$0^{\circ}C$ when the temperature increased in dry air. The CO gas sensitivity of starchadded ZnO samples was higher than that of ZnO without starch addition. The sensitivity of porous, starchadded ZnO to 200ppm CO gas was much less in humid atmosphere than in dry atmosphere since water vapor increased the conductivity of porous ZnO in air, but decreased the conductivity in CO. Maximum sensitivity to 200 ppm CO gas balanced by air was about 100 in dry atmosphere and about 15 in RH 23% atmosphere.

  • PDF

분자동역학을 이용한 액상과 기상계면에서의 열전도율 예측 (Estimation of Thermal Conductivity at Liquid and Vapor Interface by Molecular Dynamics Simulation)

  • 구진오;최영기;이준식;박승호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1558-1563
    • /
    • 2004
  • This work applies the nonequilibrium molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and calculates the thermal conductivity by linear response function. As a preliminary test, the thermal conductivity of pure argon fluid are calculated by nonequilibrium molecular dynamics simulation. It is found that the thermal conductivity decrease with decreasing the density. When both argon liquid and vapor phase are present, the effects of the system temperature on the thermal conductivity are investigated. It can be seen that the thermal conductivity of liquid-vapor interface is constant with increasing the temperature

  • PDF

우리나라 고령토의 열전도계수에 관한 연구 (A study on the Thermal Conductivity of Kaolin in Korea)

  • 박희용;이흥주;강건
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.162-172
    • /
    • 1989
  • The steady one dimensional heat flow method was used for the measurement of thermal conductivity of kaolin. The effects of the classification, density and moisture content on the thermal conductivity were studied experimentally for the 9 classes of kaolin in Korea. As the results of this study, it was found that the classification did not effect the thermal conductivity, and the conductivity increased as the density and moisture content increased. The correlation equation of the thermal conductivity as a function of the density increase rate was found and the values for the thermal conductivity as a function of moisture content were recommended.

  • PDF