Browse > Article
http://dx.doi.org/10.5714/CL.2010.11.2.090

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression  

Rani, Adila (Polymer Hybrid Center, Korea Institute of Science and Technology)
Nam, Seung-Woong (Polymer Hybrid Center, Korea Institute of Science and Technology)
Oh, Kyoung-Ah (Polymer Hybrid Center, Korea Institute of Science and Technology)
Park, Min (Polymer Hybrid Center, Korea Institute of Science and Technology)
Publication Information
Carbon letters / v.11, no.2, 2010 , pp. 90-95 More about this Journal
Abstract
Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.
Keywords
Synthetic and natural graphite; Graphene; Carbon nanotubes; Electrical conductivity under compression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771.   DOI   ScienceOn
2 Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.   DOI   ScienceOn
3 Mathur, R. B.; Dhakate, S. R.; Gupta, D. K.; Dhami, T. L.; Aggarwal, R. K. J. Mater. Process. Technol. 2008, 203, 184.   DOI   ScienceOn
4 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.   DOI   ScienceOn
5 Avouris, P.; Chen, Z.; Perebeinos, V. Nature Nanotech. 2007, 2, 605.   DOI   ScienceOn
6 Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. Nano Letters. 2007, 7, 3394.   DOI   ScienceOn
7 Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.   DOI   ScienceOn
8 Liang, X.; Fu, Z.; Chou, S. Y. Nano Letters. 2007, 7, 3840.   DOI   ScienceOn
9 Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Mullen, K. Angew. Chem. Int. Ed. 2008, 47, 2990.   DOI   ScienceOn
10 Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.   DOI   ScienceOn
11 Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Summchen, L.; Roy, C. Carbon 2001, 39, 1147.   DOI   ScienceOn
12 Probst, N.; Grivei, E. Carbon 2002, 40, 201.   DOI   ScienceOn
13 William, S. H.; Richard, E. O. J. Am. Chem. Soc. 1958, 80, 1339.   DOI
14 Celzard, A.; Mareche, J. F.; Payot, F.; Furdin, G. Carbon 2002, 40, 2801.   DOI   ScienceOn
15 Sanchez-Gonzalez, J.; Macias-Garcia, A.; Alexandre- Franco, M. F.; Gomez-Serrano, V. Carbon 2005, 43, 741.   DOI   ScienceOn
16 Deprez, N.; McLachlan, D. S. J. Phys. D: Appl. Phys. 1988, 21, 101.   DOI   ScienceOn