• Title/Summary/Keyword: concrete spalling

Search Result 351, Processing Time 0.022 seconds

The water vapor pressure property of 150MPa level ultra high strength concrete reinforced with polypropylene fiber and amorphous steel fiber at high temperature (고온에서 폴리프로필렌섬유와 비정질강섬유를 보강한 150MPa급 초고강도 콘크리트의 수증기 압력특성)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.132-133
    • /
    • 2020
  • The aim of this study is to evaluate the combination effect of amorphous steel fiber and polypropylene fiber on spalling of the 150MPa level ultra high strength concrete. Considering spalling has a great relationship with water vapor pressure, this paper is focusing on water vapor pressure. The test specimens were heated accordance with ISO-834 Standard Curve using electric heating furnace, the depth of 10mm water vapor pressure formation was tend to get faster and spalling damage become severe when the mixing proportion of amorphous steel fiber increase. When using ultra high strength concrete reinforced with amorphous steel fiber, further research about proper mixing proportion of polypropylene fiber.

  • PDF

An Experimental Study of Polypropylene Fiber for the Prevention of Explosive Spalling of Tunnel Concrete Lining (터널 콘크리트 라이닝 폭열 방지를 위한 폴리프로필렌 섬유 혼입율 분석 연구)

  • Kim, Nag Young;Shim, Jae Won;Shim, Jong Sung;Won, Jong Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.323-333
    • /
    • 2005
  • Recently the fire is happening at the tunnel and underground - structure internationally. We are socially the economy the actual circumstances which serious loss is happening due to an fire occurrence when fire happened which is closed like tunnel and underground - structure, the collapse from the burglar degradation of strength of tunnel concrete lining and human life damage happen. It causes big problem while the long time disconnects a traffic network. While the fire happened in this research at the tunnel, the paper construct a basis data to deduce the specification regulation about stability of tunnel concrete lining. In this paper, the experiment was carried out for the prevention of explosive spalling of tunnel to use a reinforced Polypropylene concrete which mixes a Polypropylene which are known for the thing by being efficient at a protect of explosive spalling of the concrete. According to the firproof test result of reinforced Polypropylene admixture mortar, Polypropylene admixture of prevention of explosive spalling analyzed 0.2%-0.25%.

  • PDF

Spalling Prevention of High Strength concrete Corresponding to the Various Heating Curves (가열온도곡선 변화에 따른 고강도 콘크리트의 폭렬방지특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.127-134
    • /
    • 2009
  • This study investigated their properties of spalling resistance and residual compressive strength after fire test corresponding to various ISO, RABT heating curves, and contents of hybrid organic fiber of high strength concrete. The results were summarized as following. As fundamental characters of concrete with hybrid organic fiber, the flowability was directly declined as the increase of fiber contents, and air contents were decreased or increased a little bit, but there was not big difference. The compressive strength was gradually declined sluggishly at 28 days. As properties of fire resistance, in case of RABT heating curves, compare with ISO heating curves a spalling aspect showed till range that has much contents of hybrid organic fiber, but they are mostly peeling spalling, which means spalling aspect didn't happen to inside. In conclusion, in case of W/B 25% high strength concrete, the spalling was prevented over 0.04% of contents of fiber at ISO heating curve and over 0.10% of contents of fiber at the RABT heating curve. In case of spalling was prevented, mass reduction rate according to the change of heating temperature curves showed around 7% at ISO heating curves and around 9% at RABT heating curves. The residual compressive strength rate corresponding to the change of heating temperature curves showed 50%~60% at ISO heating temperature curves and 30%~35% at RABT heating temperature curves in case of spalling was prevented.

The Variations on The Fire Resistance of High Strength Concrete Column Incorporating Organic Fiber with Assessment Methods (유기 섬유 혼입 고강도 콘크리트 부재의 평가 방법에 따른 내화성능 변화에 관한 연구)

  • Lee, Seung-Hoon;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.945-948
    • /
    • 2008
  • Fire resistance is a measure of the ability of building element to resist a fire. For concrete columns, the fire resistance depends on many factors, including strength, density, and moisture content of concrete, fire intensity, column size and shape, reinforcement detail, loading condition, and aggregate type etc. However, it is well-known that the high strength concrete (HSC) is more susceptible to spalling than normal strength concrete (NSC) and the behaviour of HSC column exposed to fire is significantly affected by the spalling. Recently, as one of the measures to reduce the spalling of HSC, incorporating polypropylene(PP) fiber has been investigated and successfully used in construction fields. However, the establishment of assessment method on the fire resistance of HSC column is very important as well as the improvement of fire performance of HSC. In this study, the variations on the fire resistance of HSC column with assessment methods was studied for the columns controlled the concrete spalling by PP fiber.

  • PDF

State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete (고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구)

  • Kim, Woo-Suk;Kang, Thomas H.K.;Kim, Wha-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.28-39
    • /
    • 2014
  • This paper reviews past literatures relevant to fire-resistance properties of high strength concrete and investigates spalling mechanism of high strength concrete in fire. First, literatures were reviewed on spalling occurrence and fire-resistance methods. Second, a chemical change of concrete components in an elevated temperature was presented. Finally, the mechanism of the spalling occurrence and spalling resistance were examined in terms of hybrid fiber content. The focus of the experimental study as part of this research is to investigate the effects of fire on the variation of thermal properties of high strength concrete, which tends to be used in super tall buildings. This experimental study was devised to investigate the fire-resistance performance of high strength concrete containing hybrid fibers. A total of 48 test specimens were exposed to high temperature ranging from $100^{\circ}C$ to $700^{\circ}C$, including room temperature (${\sim}20^{\circ}C$). Test results provide valuable information regarding fire-resistance properties of strength concrete with 100 MPa or greater.

Laser Scabbling of a Concrete Block Using a High-Power Fiber Laser

  • Oh, Seong Y.;Lim, Gwon;Nam, Sungmo;Kim, TaekSoo;Kim, Ji-Hyun;Chung, Chul-Woo;Park, Hyunmin;Kim, Seonbyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm·min-1 or 600 mm·min-1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3·min-1 or 227 cm3·min-1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.

Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves (화재곡선과 PET섬유 혼입량에 따른 고강도 세그먼트 콘크리트의 화재저항성 평가에 대한 연구)

  • Choi, Soon-Wook;Lee, Gyu-Phil;Chang, Soo-Ho;Park, Young-Taek;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.311-320
    • /
    • 2014
  • High strength concrete is not only vulnerable to the occurrence of spalling which generates the loss of cross-section in concrete structures but produces faster degradation in its mechanical properties than normal strength concrete in the event of fire. This study aims to evaluate fire resistance of high strength segment concrete with PET fibers mixed to prevent spalling under ISO834 (2hr) and RABT fire curve. As results, the samples without PET fibers show the concrete loss up to the depth of about 8 cm and 9.5 cm from the surface exposed to fire under ISO834 and RABT fire curve respectively. The samples mixed with PET fiber of 0.1% show no spalling under ISO834 fire curve and the spalled thickness of 6.5 cm under RABT fire curve after the fire tests. Finally, the sample mixed with PET fiber of 0.2% shows no spalling under RABT fire curve. The results indicate that the suitable amounts of PET fiber for securing fire resistance performance of this high strength segment concrete are 0.1% under ISO834 fire curve and 0.2% under RABT fire curve. However, even though spalling does not occur, it is necessary to repair the deterioration of concrete up to 4 cm from the surface exposed to fire after fire.

Study on the Repair Method of R/C Structures(III) (철근콘크리트 구조물의 보수공법 연구(III) -정.동적 휨특성 연구-)

  • 심종성;홍영균;황의승;배인환;이은호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.225-230
    • /
    • 1995
  • Concrete structures need repair and rehabilitation due to functional deficiencies such as cracks, scaling and spalling. Loss of section such as spalling is caused by corrosion of reinforcing bar, fire, temperature change, poor design and etc. This study aims to examine the characteristics of polymer(epoxy)and polymer-cement(latex) for repair materials and to provide the proper repair scheme through static and fatigue tests. Totally 12 beams were tested. Results from static and fatigue tests of beams repaired with polymer and polymer-cement were compared.

  • PDF

Study on the High Temperature Properties of Fireproof Mortar Using Various Types of Fine Aggregate (잔골재 종류에 따른 내화피복용 모르타르의 고온 성상에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • High strength concrete has a structural advantage as well as superior usability and durability, so that its application in building is being steadily augmented. However, in the high temperature like in a fire, the high strength concrete has extreme danger named explosive spalling. It is known that the major cause of explosive spalling is water vapour pressure inside concrete. General solution for preventing concrete from spalling include applying fire protection coats to concrete in order to control the rising temperature of members in case of fire. The purpose of this study is to investigate the high temperature properties of fireproof mortar using organic fiber and various types of fine aggregate for fire protection covering material. The results showed that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. This causes the internal temperature to rise. As a results, it is found that a new fireproof mortar can be used in the fire protection covering material in high strength concrete.

Fire Resistance Performance of High Strength Concrete Columns with Fireproof Gypsum Board (방화석고보드를 부착한 고강도 콘크리트 기둥의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hyun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, fire resistance performance of high strength concrete specimen with fireproof gypsum board was investigated for possible use in upgrading fire-resistant performance of the existing building and repair of fire damaged structures. Fire test of eight identical high strength concrete columns were carried out for 180 minutes in accordance with ISO-834. The temperature distributions in longitudinal reinforcement and concrete temperature at various depths were recorded. The fireproof performance of gypsum board and explosive spalling of concrete were observed. The specimens with 15 mm thick twoply fireproof gypsum board spalled after gypsum board crumbled regardless of fastening methods. However, when the thickness of fireproof gypsum board was more than 30 mm, it was possible to prevent the explosive spalling and control the rebar temperature. Although the effect of cover thickness could not be compared because the explosive spalling occurred, there seemed to be no difference in insulation efficiency.