• Title/Summary/Keyword: concrete pile

Search Result 385, Processing Time 0.027 seconds

Wave Propagation Analysis for Pile-Slab Section on High Speed Railway (고속철도 파일슬래브공법 적용구간에서의 파전파해석)

  • Lee, Kang-Myung;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3201-3207
    • /
    • 2011
  • This paper reviewed wave propagation of train vibration based on the study of high speed railway soft ground section with pile slab construction. In a filed of railway, concrete track has been adapted in a railway construction. And in order to maintain its track, soil improving method was required to control residual settlement. Within many soft ground settlement prevention techniques, pile slab method has an effect of minimizing residual settlement of soft ground. This is possible using support embankment load method by construct pile slab or cap the upper soft ground. This paper reviewed vibration wave characteristic of soft ground section with pile slab using numerical analysis application through finite element analysis. Pile slab method is established between high stiffened soft ground and embankment this creates a possibility of vibration block or slab amplification. Thus analyzed of wave propagation was done with roadbed and structure property to confirm application performance of pile slab method of high speed railway structure.

  • PDF

Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method (주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가)

  • Lee, Kyung-koo;Kim, Dae-Hee;Joo, Eun-Hee;Kim, Young-Gi;Kim, Bong-Chan;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater (지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.5-17
    • /
    • 2022
  • A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.

Problem and Improvement Measure of PHC Pile Construction (PHC파일 시공관리 문제점 및 개선방안)

  • Park, Tae-Kyu;Lee, Jung-Chul;Lee, Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.344-348
    • /
    • 2008
  • During the last few years, the use of Pre-tensioned spun High strength Concrete(PHC) pile has been gradually increased in many construction sites such as super high-rise and large building construction. there is almost no specific code and/or standard described in the specifications to check verticality for Pre-tensioned Spun High Strength Concrete pile installation process. The most commonly used method for the vortical PHC pile installation is a naked-eye measurement or water level measurement conducted by assistant crew in the construction sites. And recent analysis results of the pile cutting work revealed that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is very labor intensive work, thus requiring a large amount of additional time, costs, and efforts. The main objective of the research is to analize problems and to improvement. measure of PHC Pile Construction. The improvement measure present to the main problem with survey and discussion.

  • PDF

Analysis on Temperature Change of Ground by Long-term Performance of Energy Pile (수치해석을 통한 에너지 파일의 장기 운용에 따른 지반의 온도변화 분석)

  • Kim, Beom-Jun;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.5-15
    • /
    • 2019
  • In this study, to investigate the effect of long-term performance of energy pile on ground temperature, a numerical analysis was conducted by simulating the ground where an energy pile was installed. In the analysis, a changing distance from the outer perimeter of a heat circulation pipe to the surface of concrete pile for an intermittent operation (8-hour operation, 16-hour stop) was considered. Simulation results showed that long-term heat exchange under the intermittent operation of energy pile reduced a thermal recovery in the ground and increased the ground temperature through the residual thermal energy. In addition, the ground temperature became higher as it got closer to the energy pile and increased as the distance from the outer perimeter of heat circulation pipe to the surface of concrete pile decreased.

Properties of PHC Piles Using TFT-LCD Waste Glass (TFT-LCD 폐유리 사용 고강도 콘크리트 파일의 특성)

  • Lee, Seung-Heun;Lee, Seung-Tae;Min, Kyung-San;Jeon, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.319-320
    • /
    • 2010
  • This Study aimed to investigate fundamental properties of PHC pile using waste TFT-LCD glass powder. Through the present study, waste TFT-LCD glass powder may be taken into consideration for the application of mineral admixture for PHC pile.

  • PDF

Analysis of Composite Pile Behavior under Lateral Loadings (수평재하에 따른 복합말뚝의 거동분석)

  • Hwang, Taik-Jean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1396-1404
    • /
    • 2012
  • A composite pile consisted of a concrete lower part with a steel tubular pile at upper part was installed by pre-drilling method. Seven pairs of strain gauges and inclinometer were attached on the pile in order to measure stresses and displacement along the pile during the lateral loading test. The results of instrumentation were analyzed using various theoretical approaches. The back analysis showed that the measured stresses were smaller than those of the calculated. The maximum stress is measured at the steel upper part and decreased rapidly with depth of the pile. The calculated lateral displacement along the pile provide very good agreement with the measured values if the coefficient of subgrade reaction is selected properly. The design concept of a composite pile is verified by the measured stresses and displacement which is within the tolerable limits of the pile.

Behavior of Pile Groups in Multi-layers Soil under Lateral Loading (다층지반에서 횡하중을 받는 군말뚝의 거동)

  • Kim, Yongmoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • This paper deals with the results for a numerical analysis of single piles and pile groups in multi-layers soil(granite soil-clay-granite soil) subjected to monotonous lateral loading using the ABAQUS finite element software. The investigated variables in this study include free head and embedded capped single pile, pile diameter (0.5m), pile length (10m), and pile groups. Numerical analyses were conducted by variation of spacing piles(s=3D, 4D, 5D) to compare the behaviour of single pile without cap and group pile. The $1{\times}3$ pile group(leading pile, middle pile, trail pile) was selected to investigate the individual pile and group lateral resistance, the distribution of the resistance among the piles. The analysis model of clay and the material of granite soil was modeled by using Druker-Prager constitutive relationship and existing treatise respectively. The pile was considered as a elastic circular concrete pile. As a result, the more pile space was extended, the value of P-multiplier is appeared to be less effective to leading pile. The lateral resistance of single-layer showed approximately 4-20% larger than the multi-layers.

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.