DOI QR코드

DOI QR Code

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater

지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성

  • Kwak, Chang-Won (Dept. of Civil & Environmental Engrg., Inha Tehcnical College)
  • 곽창원 (인하공업전문대학 건설환경공학과)
  • Received : 2022.02.09
  • Accepted : 2022.03.28
  • Published : 2022.05.31

Abstract

A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.

말뚝(pile)은 연약한 지반에 구조물을 설치하기 위하여 지중에 관입시키는 매개체로서, 특히 PHC말뚝은 설계기준강도 80MPa 이상의 고강도 콘크리트를 사용하여 제작하므로 압축력과 휨모멘트에 대한 저항성이 우수하다. 또한 강관 말뚝 대비 경제성에서 유리하며 공장에서 생산되므로 품질확보 및 관리가 용이하다. 하지만 PHC말뚝의 설계 시 지지력에 영향을 미치는 주면마찰력은 단순히 경험식 또는 N값 등을 이용한 추정치에 의한 설계가 이루어지고 있으며, 특히 최근 빈도수가 급증하고 있는 국내 지진에 대하여 PHC말뚝 주면부에 형성되는 지반과의 접촉면 동적거동에 관한 실험적 연구 사례는 미미한 실정이다. 또한 지반 내 지하수의 pH 값과 같은 지반환경적 요소 역시 고려되지 않고 있다. 본 연구에서는 지하수의 pH 값을 고려하여 산성, 중성, 염기성 용액에 1개월간 수침시킨 콘크리트 시료를 점토의 구성광물인 카올리나이트 시료와 접촉시키고, 반복 단순전단시험을 수행하였다. 반복 단순전단시험은 상재압 0.2MPa 및 0.4MPa에 대하여 각각 수행하였고 그 결과를 비교하였다. 또한 접촉면의 동적 거동을 합리적으로 표현하기 위하여 교란상태개념(Disturbed State Concept)을 도입하여 교란상태함수를 구성하는 매개변수를 도출하였다. 그 결과 염기성 수침시료에 대하여 접촉면의 교란도가 가장 급격히 증가하였고 구속압이 작을 경우 보다 작은 누적 전단변형률에서 조기에 접촉면이 파괴상태에 근접하는 결과를 나타내었다. 또한 이러한 경향을 정량적으로 표현하는 교란상태함수의 매개변수를 새로이 제시하였다.

Keywords

Acknowledgement

본 논문은 2021년도 인하공업전문대학 학술연구사업 지원에 의하여 연구되었습니다. 연구지원에 감사드립니다.

References

  1. Araei, A.A., Razeghi, H.R., Tabatabaei, S.H., and Ghalandarzadeh, A. (2009), "Evaluation of Frequency Content on Properties of Gravelly Soils", Research Project, No. 1-1775-2008, BHRC, Iran.
  2. ASTM D3999. (1996), "Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus", ASTM International, West Conshohocken, PA., Unite States.
  3. Choi, S.M., Jung, J.Y., Jung, E.H., Kawg, E.G., and Kim, J.M. (2005), "The Study on the Surface Properties of Concrete Tile According to the Autoclave Curing", Proceedings of The Korean Institute of Building Construction, pp.77-80.
  4. Choi, Y.K., Lee, W.J., Lee, C.U., and Kwon, O.K. (2019), "Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data -", Journal of the Korean Geotechnical Society, Vol.35, No.8, pp.17-30. https://doi.org/10.7843/KGS.2019.35.8.17
  5. Desai, C.S. (1974), "A Consistent Finite Element Technique for Work-softening Behavior", Proceedings of International Conference on Computer Mechanics In Nonlinear Mechanics, University of Texas Press, Austin, Texas
  6. Huang, F.Y., Wu, S.W., Luo, X.Y., Chen, B.C., and Lin, Y. (2018), "Pseudo-static Low Cycle Test on the Mechanical behavior of PHC Pipe Piles with Consideration of Soil-pile Interaction", Engineering Structures, Vol.171, No.15, pp.992-1006. https://doi.org/10.1016/j.engstruct.2018.01.060
  7. Jeong, S.S. and Lee, C.J. (2003), "Slip Effect at the Pile-soil Interface on Dragload", Journal of the Korean Geotechnical Society, Vol.19, No.3, pp.65-74.
  8. Kim, B.I., Lee, S.H., Kim, Y.U., Jo, S.M., Yoon, C.Y., and Jo, Y.J. (2013), "Foundation Engineering", MoonUnDang, ISBN 978-89-7393-985-5, pp.167.
  9. Kim, S.I., Jung, S.S., and Jung, S.Y. (1994), "A Simplified Method for the Calculation of Skin Friction on Piles in Soft Clay", KSCE Journal of Civil and Environmental Engineering Research, Vol.14, No.1, pp.171-178.
  10. Kwak, C.W. (2014), "Cyclic Shear Behaviors of Geosynthetic-Soil Interface Considering Chemical Effects", Ph.D. Dissertation, Department of Civil and Environmental Engineering, Seoul National University, Seoul, Korea.
  11. Kwak, C.W., Park, I.J., and Park, J.B. (2013), "Evaluation of Disturbance Function for Geosynthetic-soil Interface Considering Chemical Reactions based on Cyclic Direct Shear Tests", Soils and Foundations, Vol.53, No.5, pp.720-734. https://doi.org/10.1016/j.sandf.2013.08.010
  12. Kwak, C.W., Park, I.J., and Park, J.B. (2016), "Development of Modified Interface Apparatus and Prototype Cyclic Simple Shear Test Considering Chemical and Thermal Effects", Geotechnical Testing Journal, Vol. 39, No. 1, pp. 20-34.
  13. Kwak, C.W., Park, J.B., Jang, D.I., and Park, I.J. (2017), "Dynamic Shear Degradation of Geosynthetic-Soil Interface in Waste Landfill Sites", Applied Science, Vol.7, No.1225, doi:10.3390/app7121225.
  14. Lee, Y.H. and Kim, M.H. (2008), "Load Transfer Characteristics and Ultimate Bearing Capacity of PHC Pile in Deep Soft Clay Layer", Journal of the Korean Geo-Environmental Society, Vol.9, No.1, pp.41-46.
  15. Luo, X., Huang, F., Zhuang, Y., Wu, S., and Qian, H. (2019), "Modified Calculations of Lateral Displacement and Soil Pressure of Pile Considering Pile-Soil Interaction under Cyclic Loads", Journal of Testing and Evaluation, Vol.49, No.4. 10.1520/JTE20190267.
  16. Park, I.J. and Desai, C.S. (2000), "Cyclic Behavior and Liquefaction of Sand Using Disturbed State Concept", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.9, pp. 834-846. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:9(834)
  17. Park, T.K., Lee, J.C., and Lee, C.S. (2008), "Problems and Improvement Measure of PHC Pile Construction", Proceedings of Korea Institute of Construction Engineering and Management, Nov., No.07, pp.344-348.
  18. Park, Y.K., Ko, H.J., Kim, H.W., and Yoon, K.W. (2015), "The Chemical Resistance Evaluation of the PHC Pile using Air-cooled Blast Furnace Slag Aggregate", Proceedings of Korea Concrete Institute, May, pp.537-538.
  19. Pestana, J.M., Biscontin, G., Nadim, F., and Andersen, K. (2000), "Modeling Cyclic behavior of Lightly Overconsolidated Clays in Simple Shear", Soil Dynamics and Earthquake Engineering, Vol.19, pp.501-519. https://doi.org/10.1016/S0267-7261(00)00032-4
  20. Rojas, E., Valle, C., and Romo, M.P. (1999), "Soil-Pile Interface Model for Axially Loaded Single Piles", Soils and Foundations, Vol.39, No.4, pp.35-45. https://doi.org/10.3208/sandf.39.4_35
  21. Sagong, M. and Paik K. H. (2004), "Side Resistance of Rock Socketed Drilled Shafts Considering in Situ Rock Mass Condition", Proceedings of The Korean Society For Railway, pp.41-47.
  22. Shibuya, S. Mitachi, T., Fukuda, F., and Degoshi, T. (1995), "Strain-rate Effects on Shear Modulus and Damping of Normally Consolidated Clay", Geotechnical Testing Journal, Vol.18, No.3, pp.365-375. https://doi.org/10.1520/GTJ11005J
  23. Shin, K.S. and Lim, B.H. (2018), "Engineering Properties of PHC Pile Considering Replacement Ratio of Ground Granulated Blast-Furnace Slag and Curing Conditions," Journal of Korea Institute of Building Construction, Vol.18, No.5, pp.439-446. https://doi.org/10.5345/JKIBC.2018.18.5.439
  24. Tomlinson, M.J. (1994), "Pile Design and Construction Practice 4th Edition", E & FN Spon., pp.133-134.
  25. Tran, N.X., Bong, T., Yoo, B.S., and Kim, S.R. (2021), "Evaluation of the Soil-pile Interface Properties in the Lateral Direction for Seismic Analysis in Sand", Soil Dynamics and Earthquake Engineering, Vol.140, 106473. https://doi.org/10.1016/j.soildyn.2020.106473
  26. Yoo, J.W., Kim, T.H., Kim, S.K., and Han, C.H. (2002), "A Study on the Improvement Method of Construction Management for PHC Pile in an Apartment House", Proceedings of Korea Institute of Construction Engineering and Management, pp.244-247.
  27. You, S.K., Shin, H., Lee, K.W., Park, J.J., Choi, C.L., and Hong, G. (2019), "A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition", Journal of the Korean Geosynthetics Society, Vol.18, No.2, pp. 45-54. https://doi.org/10.12814/JKGSS.2019.18.2.045