• Title/Summary/Keyword: concrete mix

Search Result 1,199, Processing Time 0.024 seconds

CO2 Evaluation of Reinforced Concrete Column Exposed to Chloride Attack Considering Repair Timing (보수시기를 고려한 염해에 노출된 콘크리트 교각의 탄소량 평가)

  • Kim, Seong-Jun;Kim, Young-Joon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, $CO_2$ amount is evaluated considering repairing timing and unit $CO_2$ amount per repair method including various stage of material manufacturing, moving, and construction. Four mix proportions with mineral admixture are considered and repairing timing/numbers are simulated based on the results from Life 365 which can handle chloride penetration. Furthermore two repair methods (simple cover concrete replacement and replacement with electro-chemical method for removing chloride content) are considered and the related $CO_2$ emissions are evaluated. From the study, the case with high W/B (water to binder ratio) ratio shows smaller $CO_2$ emission in construction stage but it increases more rapidly with increasing number of repair. $CO_2$ emission considering electro-chemical method greatly increases with the increasing unit $CO_2$ for the repairing method. The numbers of jumping step (repairing number) are evaluated to be 9 for WB37-OPC, 18 for WB50-OPC, 4 for WB40-SG, and 7 for WB47-SG respectively. RC structures with the longer maintenance free period are evaluated to be advantageous for saving $CO_2$ emission.

A Study on the Gradation Effect of the Property of Roller Compacted Concrete Pavement (골재 입도분포가 도로포장용 롤러전압 콘크리트에 미치는 영향 연구)

  • Song, Si Hoon;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • PURPOSES : The use of environmentally friendly construction methods has been recently encouraged to reduce fuel consumption and the effects of global warming. For this purpose, the roller compacted concrete pavement (RCCP) construction method has been developed. RCCP is more environmentally friendly and economically efficient than general concrete by reducing the amount of CO2 generated through the application of a smaller amount of cement. RCCP has a number of advantages such as an easy construction method, low cost, high structural hydration performance, and aggregate interlocking. However, mix design standards and construction guidelines of RCCP are required for domestic application. In addition, a study on aggregate selection, which has an effect on the characteristics of RCCP, is necessary owing to a limited number of researches. Thus, the aggregate effect on the performance of RCCP in securing the required strength and workability was evaluated in consideration of domestic construction. METHODS : Sand and coarse aggregates of both 19mm and 13mm in maximum size were used in this study. Four types of aggregate gradations (s/a = 30%, 58%, and 70% for the sand and coarse aggregate of 19mm in maximum size, and s/a = 50% for a combination of the three types of aggregates) were set up to investigate the effects of the PCA band on the RCC characteristics. The conditions of s/a = 30% and 70% were evaluated to check the gradation effect outside of the recommended band. The conditions of s/a = 58% and 50% were used because they are the optimum combination of the two and three types of aggregates, respectively. RCCP gradation band was suggested gradation with a proper construction method of RCCP by synthetically comparing and analyzing the correlation of optimum water content, maximum dry density, and strength of requirements through its consistency and compaction test. RESULTS : The lower and upper limit lines are insufficient to secure a relatively strong development and workability compared to an aggregate gradation in the RCCP gradation band region. On the other hand, the line in the RCCP gradation band and the 0.45 power curve in the RCCP gradation band region were satisfactory, ensuring the required strength and workability. CONCLUSIONS : The suitable aggregate gradation on RCCP process should meet the RCCP gradation band area; however, fine particles passing through a #60 sieve do not need to be within the recommended gradation band because the influence of this region on such fine particles is small.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

Hospital Marketing Condition and Strategy -Of a General Hospital- (병원마케팅 실태와 전략방안 -지역사회의 일 종합병원을 대상으로-)

  • Baek, Myung;Ro, So-Young
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.6 no.2
    • /
    • pp.233-246
    • /
    • 2000
  • The purpose of this study was to investigate the real condition of hospital marketing and concrete strategy on medical consumers need for enhance the effectiveness of hospital management. The data were collected from January 27 to February 3, 2000 at a general hospital located in M city to 205 in-patients and out-patients by questionnaires. The research tool was based on literatures. The data was analysed by the use of percentage, mean, t-test and ANOVA by SAS(Statistical Analysis System) Package Program. The results of this study are summerized as follows: 1. Mean score of the marketing mix (4P 's) was 3.1 in total and each mean score was 3.6 in product, 2.5 in prices, 3.3 in place and 3.1 in promotion. The following are the items which received the highest scores in each: 'The hospital is clean' in service category; 'the prices of meals at the restaurant the patients' families use are reasonable ' in price sphere. In distribution, 'it is easy to locate the hospital' and in promotion,'we'll use this hospital again' and 'we'll recommend this hospital to others'. 2. Marketing mix factors(4P's) was significantly different on the general characteristics in terms of marriage status, occupations and the period of hospitalization. 3. The most important reason for choosing this hospital was 'This is a general hospital with good facilities' and the next were 'The hospital staffs are kind and the hospital is clean' and 'The traffic is convenient to come'. The most important factors contributing to a good image formation of the hospital were 'this is a clean hospital', 'This is a hospital with kind people' and 'this hospital is equipped with good medical facilities'. 4. The factors for making a good image concerning the nursing service were professional knowledge, good nursing skills and kindness. After grasping the marketing conditions of the hospital aided by the above-mentioned research results, the researchers concludes that it is necessary to develop an institutionalized service strategy to increase the satisfaction the patients feel about the hospital facilities and kindness of the staff and as a result, to differentiate it from other medical institutions.

  • PDF

Quality Improvement of High Volume Fly Ash Concrete due to Early Strength Gain Admixture (조강형 혼화제에 의한 플라이애시 다량 치환 콘크리트의 품질 향상)

  • Han, Cheon-Goo;Park, Jong-Ho;Lee, Joung-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 2009
  • The purpose of the study was to improve quality of high volume fly ash concrete. The study evaluated on the possibility of early quality improvement of high volume fly ash concrete with early strength gain admixture ('GA' below) developed by the preceding research. The study regarded applying naphthalene admixture ('NA' below) to mix proportion substituting FA 15 % to be plain. In the event of substituting FA 20, 25 and 30 %, the study compared engineering properties of concrete with plain by applying GA. Because of features of fresh concrete, fluidity falls down when GA is applied. Therefore, its use amount shall be increased. Only, in W/B 60 %, it was beneficial since slump loss was reduced about 35~70 mm than plain. The study could see that AE use should be increased proportionally since air content was reduced by coming from AE absorption operation of unburned coal content included in FA according to an increase in the amount of FA use. Reduction effect of bleeding could be anticipated since the amount of bleeding appeared at least in FA 20 %. Because of hardened concrete, time of setting appeared in the same level as plain when GA was applied. Therefore, it is judged that delay of setting can be reduced. In compressive strength, the study could check the same strength development as plain when GA was applied, having nothing to do with W/B and curing temperature. However, it is thought that we shall pay attention to GA use in the event of FA 30 % substitution. Freezing and melting resistance had less early value than plain. However, it is judged that there will be no problem of frost resistance since there is no a large difference between freezing and melting resistance and plain in overall. In accelerated neutralization, it was analyzed that a problem of weakening in neutralization appointed as a demerit when FA was applied in mass in proportion with GA use could be settled to some extent.

  • PDF

Reading Performance Test of RFID Technology for Curtain Wall Material (커튼월 관련 자재에서 RFID 적용을 위한 인식 성능 테스트)

  • Kim, Yong-Bae;Song, Jae-Hong;Yoon, Soo-Won;Chin, Sang-Yoon;Kwon, Soon-Wook;Kim, Yea-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.176-186
    • /
    • 2008
  • The radio frequency identification (RFID) technology allows various forms of applications in many industries including construction. and in Korea, RFID has already been adopted for the use in daily labor control, logistics monitoring of ready-mix concrete, supply chain management of long-lead items, such as structural steel members and curtain walls. Even though RFID tags have varied reading performances depending on various factors including material of tracking target and surrounding environment, there is no information on how much the reading performance of an RFID tag can be achieved against a specific construction components or materials. Therefore, the objective of this research is to identify the actual reading performance of various RFID technologies and to derive a method to maximize the reading performance for the use in the supply chain management process of curtain wall components.

A study of the replacement of desulphurization slag for sand to ready-mixed soil materials (RMSM)

  • Shiha, Yi-Fang;Tseng, Shih-Shong;Wang, Her-Yung;Wei, Chih-Ting
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.423-433
    • /
    • 2016
  • After the industrial of steelmaking by-products are processed properly, they can be used in civil engineering, not only as a substitute for natural resources and to reduce costs, but also to provide environmental protection. This study used different amounts (10%, 20%, 30%, 40%,and 50%) of desulphurization slag to replace natural fine aggregates in ready-mixed soil materials, and tested the physical and fresh properties (slump, slump flow, tube flow, initial setting time, and bleeding) and hardened properties (compressive strength, ball drop, ultrasonic pulse velocity) of the materials. The variations between the performances of the materials with different mix proportions were discussed. When desulphurization slag is used in RMSM, the workability can be enhanced obviously significantly. When the replacement of desulphurization slag is 50%, the slump flow is increased by 110mm compared with the control group, and the initial setting time increases as the replacement increases, because of bleeding. When the replacement is 10% and 20%, the compressive strength at various ages is higher than that of the control group. When the replacement is 10%, the compressive strength at 7 days is higher than that of the control group by 60%, and the ultrasonic pulse velocity is proportional to the compressive strength, which increases with age and decrease as the replacement increases. An appropriate replacement can effectively accelerate construction, and allow projects to be finished ahead of schedule; therefore, an appropriate replacement, is applicable for ready-mixed soil materials.

Noise reduction of Asphalt Concrete Pavement : Techniques and their performance evaluation (아스팔트 저소음 포장의 개발 및 공용성 평가)

  • Ock, Chang-Kwon;Kim, Jin-Hwan;Lee, Jong-Sup
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Porous pavements can provide road users with beneficial characteristics such as skid resistance and surface water drainage under rainy condition, and they cause less tire-road noise than conventional hot mix asphalt(HMA) pavements. However, voids of porous pavements are easily clogged by road debris at early stages, which leads to frequent maintenance works. Therefore, this study focused on the way of minimizing void clogging in porous pavements. During mixture design, the quantity of coarse aggregate has been increased to form many straight void conduits (SVCs) in porous HMAs. These SVCs were found to be effective resisting the void clogging problems. Four different porous HMAs(19mm, 13mm, 10mm, and 8mm) were developed and placed on highway roads. Their performances were validated with field tests during the past four years.

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.