DOI QR코드

DOI QR Code

Research on manufacturing secondary construction products using in-situ carbonation technology

In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구

  • Hye-Jin Yu (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Sung-Kwan Seo (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Woo-Sung Yum (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center)
  • 유혜진 (한국세라믹기술원 탄소중립소재센터) ;
  • 서성관 (한국세라믹기술원 탄소중립소재센터) ;
  • 염우성 (한국세라믹기술원 탄소중립소재센터)
  • Received : 2023.11.20
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

본 연구에서는 콘크리트 2차제품 제조시 기체상의 이산화탄소를 주입하는 In-situ 탄산화 기술의 적용 가능성 분석을 위해 이산화탄소 주입량에 따른 콘크리트 인터로킹 블록의 기초물성 및 미세구조 분석을 실시하였다. 안정적인 이산화탄소 주입을 위해 CO2 가스 주입용 콘크리트 혼합 설비를 구축하였으며, 이산화탄소 주입량을 시멘트량 대비 0, 0.1, 0.3, 0.5, 0.7 wt.%로 제어하였다. 기초물성 시험 결과, 이산화탄소 주입량이 0.3 %까지 증가할수록 기존 배합 대비 높은 강도 거동을 보였으며, 주입량 0.5 % 이후에는 기존 배합보다 낮은 강도를 보였으나 콘크리트 2차제품의 강도 기준(보차도용 콘크리트 인터로킹 블록)을 만족하는 것으로 나타났다. 이는 콘크리트 인터로킹 블록 제조시 이산화탄소 주입에 따른 CaCO3 결정 및 C-S-H 등의 수화물 생성이 촉진된 것으로 판단되었다. 따라서 배합중 이산화탄소를 주입하는 탄산화기술을 다양한 콘크리트 2차제품 제조 공정에 적용할 수 있는 가능성을 확인하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20212010200080, 시멘트 산업 발생 CO2 활용 In-situ 탄산화 기술개발).

References

  1. C.W. Hargis, I.A. Chen, M. Devenney, M.J. Fernandez, R.J. Gilliam and R.P. Thatcher, "Calcium carbonate cement: A carbon capture, utilization, and storage (CCUS) technique", J. Mater. 14 (2021) 2709. 
  2. J. Farfan, M. Fasihi and C. Breyer, "Trends in the global cement industry and opportunities for long-term sustainable CCU potential for Power-to-X", J. Clean. Prod. 217 (2019) 821. 
  3. M.G. Plaza, S. Martinez and F. Rubiera, "CO2 capture, use, and storage in the cement industry: State of the art and expectations", Energies. 13 (2021) 5692. 
  4. J. Taylor and L. Aldridge, "Full-profile rietveld quantitative XRD analysis of portland cement: Standard XRD profiles for the major phase tricalcium silicate (C3S: 3CaO.SiO2).", Powder Diffr. 8 (1993) 138. 
  5. Z. Zhang and G.W. Scherer, "Physical and chemical effects of isopropanol exchange in cement-based materials", Cem. Concr. Res. 145 (2021) 106461. 
  6. A. Mezhov, D. Kulisch, A. Goncharov and S. Zhutovsky, "A comparative study of factors influencing hydration stoppage of hardened cement paste", Sustainability 15 (2023) 1080. 
  7. N.A. Voglis, G.T. Kakali and S.G. Tsivilis, "Identification of composite cement hydration products by means of X-ray diffraction", Mikrochim. Acta. 136 (2001) 181. 
  8. Z.H. Ou, B.G. Ma and S.W. Jian, "Comparison of FTIR, thermal analysis and XRD for determination of products of cement hydration", Adv. Mat. Res. 168-170 (2010) 518. 
  9. K.L. Scrivener, T. Fullmann, E. Gallucci, G. Walenta and E. Bermejo, "Quantitative study of portland cement hydration by X-ray diffraction/rietveld analysis and independent methods", Cem. Concr. Res. 34 (2004) 1541. 
  10. A. Mendes, W.P. Gates, J.G. Sanjayan and F. Collins, "NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates", Mater. Struct. 44 (2011) 1773. 
  11. D. Wang, Y. Fang, Y. Zhang and J. Chang, "Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S", J. CO2 Util. 34 (2019) 149. 
  12. Y. Li, "Effect of post-fire curing and silica fume on permeability of ultra-high performance concrete", Constr. Build. Mater. 290 (2021) 123175.