• Title/Summary/Keyword: concrete for pavement

Search Result 696, Processing Time 0.022 seconds

Development of Environmental Load Calculation Method for Airport Concrete Pavement Design (공항 콘크리트 포장 설계를 위한 환경하중 산정방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Kim, Yeon-Tae;Jeong, Jin-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.729-737
    • /
    • 2013
  • The environmental load of concrete pavement can be categorized by temperature and moisture loads, which mean temperature distribution, and drying shrinkage and creep in the concrete slab. In this study, a method calculating the environmental load essential to mechanistic design of airport concrete pavement was developed. First, target area and design slab thickness were determined. And, the concrete temperature distribution with slab depth was predicted by a pavement temperature prediction program to calculate equivalent linear temperature difference. The concrete drying shrinkage was predicted by improving an existing model to calculate differential shrinkage equivalent linear temperature difference considering regional relative humidity. In addition, the stress relaxation was considered in the drying shrinkage. Eventually, the equivalent linear temperature difference due to temperature and the differential shrinkage equivalent linear temperature difference due to moisture were combined into the total equivalent linear temperature difference as terminal environmental load. The environmental load of eight civilian and two military airports which represent domestic regional weather conditions were calculated and compared by the method developed in this study to show its application.

Mechanical Characteristics of Recycled Concrete as a Pavement Material for Low-Volume Road (소 도로포장 재료로서 재생콘크리트의 역학적 특성)

  • 김광우;류능환;박용철
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.171-178
    • /
    • 1996
  • This study evaluated mechanical characteristics and performance of recycled concrete as a pavement material for use in low volume road. The recycled concrete was prepared by replacing a half of coarse aggregate with recycled coarse aggregate. Natural sand from a source was used as fine aggregate together with admixtures, such as plasticizer and fly ash (0.8% and 5% by wt. of total binder, respectively). From experimental evaluation. it was found that flexural strength. compressive strength, elastic modulus and fracture toughness of recycled concrete at 28 days were approximately $45kg/cm^2$, $250kg/cm^2$, $230,000kg/cm^2$$0.863 MPa{\cdot}m^{1/2}$. respectively. Long term strength and fracture toughness were improved significantly at the age of 6 months. In conclusion. mechanical properties of the recycled concrete were acceptable for use as concrete pavement materials in low-volume roads in rural and urban areas.

Early-Age Shrinkage of Very-Early Strength Latex Modified Concrete (초속경라텍스개질콘크리트의 초기수축)

  • Lee Jung-Ho;Choi Pan-Gil;Choi Seung-Sic;Yun Kyong-Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.269-272
    • /
    • 2004
  • After concrete casts, temperature decent and shrinkage bring volume changes of concrete pavement. Microcracking and cracking in concrete pavement are caused by these volume changes. As a result, durability of concrete pavement is deteriorated. Recently, Very-Early Strength Latex Modified concrete(below:VESLMC) from the beginning of High-Way is used as urgent repair material for bridge deck. The advantage of VESLMC is that compressive and flexural strength at 3 hours age are 4.5MPa and 21MPa respectively. It allows the traffic to open in 3 hours. But, this material has the problem which is early-age shrinkage cracking caused by water self-dissipation with rapid hydration reaction and water evaporation with body dry. Unfortunately, until now, the research about early-age shrinkage of VESLMC leaves something to be desired. Therefore, the purpose of this study is to present the early-age shrinkage of VESLMC respect to latex contents and shrinkage ratio to maximum length change that can help field engineers' skill. Latex contents of 0, 5, 10, 15, $20\%$ in standard of same workability in VESLMC are selected by experimental variables. After initial set, shrinkage value was measured with 10mm LVDT for 3 days. The results of maximum shrinkage ratio were 0.019, 0.017, 0.023, $0.027\%$ respectively.

  • PDF

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF

A Study on Effect Factor of Load Transfer Efficiency in Concrete Pavement (콘크리트포장에서 하중전달효과 영향인자 연구)

  • Yang, Hong-Suk;Suh, Young-Chan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.147-158
    • /
    • 2001
  • One of the most important factors accounting for the structural capacity of concrete pavement is load transfer efficiency. Load transfer efficiency is affected by slab temperature gradient, construction of dowel bars, degree of aging, and crack width. The purpose of this study is to determine the patterns of load transfer efficiency of concrete pavement; to determine the factors that affect the load transfer efficiency; and to present the proper measuring method of load transfer efficiency. As a result from this study, load transfer efficiency was affected primarily by the average temperature in concrete slab. Load transfer efficiency decreased with decreasing temperature and increasing crack width. For the sections with dowel bars, there were little differences in load transfer efficiency regardless of temperature changes. For the sections without dowel bars, however, there on great losses of load transfer efficiency at low temperatures. For the old pavement, even in the sections with dowel bars, the load transfer efficiency reduced as the temperature dropped For the sections in this study, 1.4% reduction of the load transfer efficiency was observed for each $1^{\circ}C$ drop in the slab temperature.

  • PDF

Evaluation for Application of Warm-mix Asphalt Concrete for Rural Road Pavement (농촌 도로 포장용 준고온 아스팔트 콘크리트 적용 평가)

  • Lee, Sungjin;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.41-50
    • /
    • 2021
  • The asphalt pavement industry has introduced the warm-mix asphalt (WMA) as a mean of energy saving and environmentally safe technology, because the WMA mixture can be mixed and compacted at 30℃ lower than conventional hot-mix asphalt (HMA) at 160℃ or higher. The implementation of WMA can be a good option for paving operations for rural road in remote place, not only due to energy saving and environmental issues, but also lower working temperature. Using WMA technology, the cooled-down asphalt mixture can be still compacted to meet the quality requirement in narrow winding rural road in remote places. Therefore, this study is designed to evaluate engineering properties of WMA binders and concretes, which were prepared for rural road pavement. The objective of the study was to evaluate and suggest proper fundamental properties level of the WMA concrete for rural road pavement. The kinematic viscosity test result indicated that the WMA binders used in this study were effective for compaction at lower temperature, i.e., at 115℃, compared to the HMA binder. According to strength property analyses, it was found that the WMA concrete was acceptable for rural road pavement even though it was compacted at 30℃ lower level. Since the deformation strength (SD) of 3.2 MPa was found to satisfy rutting and cracking resistance minimum guidelines, this value was suggested as a minimum SD value for rural road pavement, considering lack of maintenance program for rural area.

Thermal Environment Characteristics of Permeable Cement Concrete Pavement( I ) ($\cdot$보수성 시멘트 콘크리트 포장의 열환경 특성( I ))

  • Ryu Nam-Hyong;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.82-94
    • /
    • 2005
  • This study was undertaken to measure and analyze the thermal environment characteristics of the grey permeable cement concrete pavement(GPCCP), the permeable cement concrete brick pavement(PCCBP) compared with impermeable cement concrete pavement(ICCP) and bare soil(BS) under the summer outdoor environment. Following is a summary of major results. 1) The peak surface temperature was greatest in the GPCCP$(54.2^{\circ}C)$ followed by ICCP$(47.2^{\circ}C)$ rut August 2, 2002, the hottest day$(35.3^{\circ}C\;of\;highest\;temperature)$ during the experiment; peak temperature in the ICCP and BS were $45.5^{\circ}C)$ and $45.3^{\circ}C)$ respectively. 2) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the ICCP and that this was mainly due to a low albedo in the former(0.2) relative to that of the latter(0.4). 3) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the PCCBP, BS and that this was mainly due to a decreased latent heat resulting from a time dependent decreasing impact of rainfall. 4) It is necessary to make cool pavements to further studies on light-colored surface materials for attaining high albdo and construction methods which can enhance the latent heat through the continuous evaporation from pavements surface. 5) Vertical arrangement of pavement layers has not been considered in the present study, which has been focuses on the heat characteristics of the surface layer materials. Accordingly, future studies will have to be empasized on pavement methods including the vertical arrangement of the pavement layers.

A Study on the Bond Stress of Rebar in Reinforced Concrete Pavement using Recycled Aggregate (재생골재 활용 철근콘크리트포장 내 철근의 부착특성에 대한 연구)

  • Kim, Nak-Seok;Kim, Kwang-Tae;Jeon, Chan-Ki;Jeon, Joong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.77-84
    • /
    • 2005
  • Amount of demolished concretes is highly produced as dismantlement of structures to increased owing to usage alteration and deteriorated of concrete structures, but most of them have been used as material for simple reclamation. Therefore, if demolished concrete could be recycled as aggregate for concrete. it will contribute to solve the exhaustion of nature aggregate, in terms of saving resources and protecting environment, especially being want of resources in Korea. In this study it was investigated into experimental results that were carried out demolished concrete recycled aggregate gained from dismantled real structures and source concrete recycled aggregate produced according to respectively 5 steps of replacement ratio for recycling as pavement concrete aggregate.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

A Case Study on Spatting Distresses in Cold Regions (추운 지역의 스폴링 파손 사례에 관한 연구)

  • Hong, Seung-Ho;Yoo, Tae-Seok;Kwon, Soon-Min;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.79-89
    • /
    • 2005
  • Field and laboratory investigations were performed for concrete pavement of the Yeongdong Expressway located in western part of the Kangwon Province where lots of the substantially large spatting distresses were found. The spatting distresses were investigated to the naked eye in the field, and splitting tensile strength, air void, and neutralization tests were performed for the cores obtained from the pavement. In addition, load transfers at joints and dynamic bearing capacities at slab centers were measured to identify the lowering of the structural capability of the pavement. It was judged that the investigated concrete slabs were affected by freezing and thawing action because the air voids of the cores were substantially low. Therefore, it was concluded that the low air voids affected the lots of the large spatting distress in the pavement located in the region of cold winter.

  • PDF