• Title/Summary/Keyword: concrete floor finishing

Search Result 47, Processing Time 0.023 seconds

Evaluation of Cracking Strength of Floating Floor System (뜬바닥구조의 균열강도 평가)

  • Lee, Jung-Yoon;Lee, Bum-Sik;Jun, Myoung-Hoon;Kim, Jong-Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper reports the test results of the floating floor system used to reduce the floor noise of apartment buildings. Recently, many soft resilient materials placing between the reinforced concrete slab and finishing mortar are used. The resilient material should not only reduce the floor impact sound vibration from the floor but also support the load on the floor. Thus, even if soft resilient materials satisfy the maximum limitation of light-weight impact sound and heavy-weight impact sound, these materials may not support the load on the floor. The experimental program involved conducting sixteen sound insulation floating floor specimens. Three main parameters were considered in the experimental investigation: resilient materials, loading location, and layers of floor. Experimental results indicated that the stiffness of resilient material significantly influenced on the structural behavior of floating floor system. In addition, the deflection of the floating concrete floor loaded at the side or coner of the specimen was greater than that of the floor loaded at the center of the specimen. However, the aerated concrete did not effect on the cracking strength of floating floor system.

The Development of Damping Material for Standard Floating Floor Type-5 Using Ethylene Vinyl Acetate co-polymer(EVA) & Urethane Form (EVA와 경질우레탄폼을 이용한 표준바닥구조 벽식-5용 단열완충재 개발)

  • Park, Cheol-Yong;Kim, Sang-Hoon;Jang, Dong-Woon;Jang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.461-464
    • /
    • 2004
  • The reduction effect of floor impact noise depends on the various factors such as stiffness and thickness of the concrete slab, finishing If ceiling materials and the composition method. Among the rest it is well known that floating floor system is more effective. Standard floating floor(SFF) type-2 consisted of 50mm lightweight aerated concrete(LAC) and 20mm damping material has been widely used. But LAC construction problem on dry damping material occurred and the reduction effect of floor impact noise has bare minimum qualifications. Thus the aim of this study is to develop 40mm composite damping material(Soundzero Plus) for SFF type-5 which substitute LAC and damping material. 'Soundzero Plus' is satisfied with quality requirement for damping material for SFF. The heat transition rate, $0.45W/m^2{\cdot}K$ is more effective 55% about than the regulation. The test results of floor impact noise by using 'Soundzero Plus' are showed good improvement about 12dB (tested by tapping machine) and 4dB (tested by bang machine) between before and after.

  • PDF

Unsteady Analysis of Indoor Radon in Apartment Buildings Considering Finishing Materials and Ventilation (마감재 및 환기를 고려한 공동주택 실내 라돈 농도의 비정상 해석)

  • Cho, Hyun;Pang, Seung-Ki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2019
  • In this paper, we simulated a new apartment building by using radon emission test values from various building materials used as interior finishing materials. The simulations evaluated the radon concentration in the room according to the radon emissions and the ventilations for each type of finishing material (gypsum board, stone, tile and concrete). Overall concrete finish simulation case showed the highest concentration than the case using other materials due to the effect of wall area at the center of each room and the mean radon concentration at 1.5 m above the floor was slightly lower than the mean value at each center. In the case of the porch, pantry and bathroom, the radon concentration was high even when the same materials were used as in the other rooms.

Heavy-impact sound insulation performance according to the changes of dry flooring structure in wall structure

  • Cho, Jongwoo;Lee, Hyun-Soo;Park, Moonseo;Lim, Hohwan;Kim, Jagon
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.89-98
    • /
    • 2017
  • The floor heating method generally uses a wet construction method including the installation of resilient material, lightweight foam concrete, heating piping, and finishing mortar. Such a wet construction method not only delays other internal finishing processes during curing period for two mortar pouring process, but also has a disadvantage that it is difficult to replace the floor heating layer when it deteriorated because it is integrated with the frame. Dry floor heating construction method can be a good alternative in that it can solve these defects. Conversely, when it applied to the wall structure that is vulnerable to the interlayer noise compared with the column-beam structure, the question about the heavy-impact sound(HIS) insulation performance is raised. Therefore, conventional dry floor heating method is hard to apply to the wall structure apartments. Therefore, for the purpose to improve the applicability of dry floor heating method in wall structure apartments, this study investigated the change of floor impact sound, especially HIS insulation performance which is one of the required performance for the floor structure. This study tried to examine whether the change of heavy-impact sound pressure level(SPL) shows a tendency at the significant level according to the shape and mass of the floor structure. Through filed experiments on wall structure apartment, this study confirmed that the form of the raised floor shows better HIS insulation performance than the fully-supported form. In addition, it was also confirmed that the HIS insulation performance increases with the mass on the upper part. Moreover, this study found the fact that a mass of about 30 kg/m2 or more should be placed on the upper structure to reduce the heavy-impact SPL according to the bang machine measuring method. Although this study has a limit due to insufficient experiment samples, if the accuracy of this study is increased, it will contribute to the diffusion of dry floor heating by setting the HIS insulation performance target and designing the dry floor heating structure that meets the target.

  • PDF

The application study on the super flowing the polymer based cement mortar (초유동화 폴리머시멘트몰탈의 실용화연구)

  • 손형호;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.36-41
    • /
    • 1995
  • Recently, as the problems according to the deteriorated structure were gathering sterength, there were required the advent of the high peformance for polymer ceme at compostie in building constrution devision. The polymer cement mortar was developed for improvements of the various problems in ordinary cement mortar. finishing method using the super flowing polymer-based self levelling mortar for concrete slab and floor.

  • PDF

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

Effects of Floor Type and Increasing Market Weight on Performance and Pork Quality of Finishing Pigs (돈방바닥과 출하체중 증가가 비육돈의 생산효율과 돈육품질에 미치는 영향)

  • Kim D. H.;Kang J. D.;Ha D. M.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.153-160
    • /
    • 2005
  • This study was conducted to determine the effect of floor type of finishing building and increasing market weight of finishing Pigs on Performance, carcass traits and pork quality. Four hundred and forty-four finishing pigs were confined and administered with different floor type(concrete slat and bedded with sawdust) and increasing market weight(110kg to 130kg) of finishing building. The result obtained from this study were summarized as follows; 1. There was no significant difference between the floor type of finishing building in the body weight gain, feed intake and gain per feed. And also increasing market weight of finishing pigs was not affected the performance of finishing pigs. 2. Increasing market weight of finishing pigs affect the carcass yield. The market weight at 130kg showed more amount of each cut of carcass, especially the belly portion was higher, but backfat thickness was not different. 3. Carcass traits did not show any significant difference due to the difference of market weight of finishing pig and floor type of finishing building. 4. There was no significant difference in the chemical compositions and meat color of pork loin between the floor type of finishing building and increasing market weight of finishing pigs.

  • PDF

Properties of Thermal Conductivity of Cement Mortar for Apartment Housing Floor Using Combined Strengthening Method (공동주택 바닥용 시멘트 모르타르의 복합강화법 변화에 따른 열전도 특성)

  • 윤길봉;전충근;정성철;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.243-248
    • /
    • 2001
  • The objective of this study is to investigate the thermal conductivity of cement mortar for apartment housing floor using expansive admixture, copper fiber, cower lathe, hollowed aluminum plate. According to test results, temperature at point (a) located above heating pipe does not show significant variation with age, and temperature at (b), which is located at the finishing surface above heating pipe, and temperature at (c), which is located at center surface between heating pipe has remarkable change. Temperature distribution sat (b) are in order for, structure containing copper fiber>plain structure>structure containing hollowed aluminum plate>structure containing expansive admixture. Temperature distribution, shows high tendency in order for, structure containing copper fiber>structure containing copper lathe>structure containing hollowed aluminum plate>plain structure>structure containing expansive admixture. (a) estimation of temperature distribution is determined with the variation of temperature between (b) point and (c) point during 60 minutes heating.

  • PDF

Motion Analysis of Omni-directional Self-propulsive Polishing Robot (전방향 자기추진 바닥닦기 로봇의 운동해석)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.151-159
    • /
    • 1999
  • A self-propulsive polishing robot is proposed as a method which automates a floor polisher. The proposed robot with two rotary brushes does not require any mechanism such as wheels to obtain driving forces. When the robot polishes a floor with its two brushes rotating, friction forces occur between the two brushes and the floor. These friction forces are used to move the robot. Thus, the robot can move in any direction by controlling the two rotary brushes properly. In this paper, firstly a dynamics model of a brush is presented. It computes the friction force between the brush and the floor. Secondly, the dynamics of the proposed robot is presented by using the bush dynamics. Finally, the inverse dynamics is solved for the basic motions, such as the forward, backward, leftward, rightward motions and the pure rotaion. This paper will contribute to realize a self-propulsive polishing robot as proposed above, In addition, this paper will give basic ideas to automate the concrete floor finishing trowel, because its basic idea for motion is similar to that of the proposed robot.

  • PDF

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF