DOI QR코드

DOI QR Code

목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material

  • 서정기 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 정수광 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 김수민 (숭실대학교 건축학부 건축환경재료연구실)
  • Seo, Jungki (Building Environment & Materials Lab, School of Architecture, Soongsil University) ;
  • Jeong, Su-Gwang (Building Environment & Materials Lab, School of Architecture, Soongsil University) ;
  • Kim, Sumin (Building Environment & Materials Lab, School of Architecture, Soongsil University)
  • 투고 : 2017.03.02
  • 심사 : 2017.04.30
  • 발행 : 2017.05.25

초록

건축물에서 사용되는 에너지를 줄이기 위하여 다양한 연구 및 정책이 진행되고 있으나 건축물에서 구조재 및 실내 외 마감재로 폭넓게 사용되는 목재의 열적 특성에 관한 연구는 미미한 실정이다. 이에 따라, 본 연구는 목질재료와 비 목질재료의 전열성능을 분석하기 위하여 목질재료가 주로 이용되는 주거용 건축물을 대상으로 열성능이 취약한(열교 발생) 부위를 선정하고, 각 부위별로 구조재와 마감재의 구성에 따라 총 16 Case에 대해 전열성능 분석을 실시하였다. 전열 해석 시뮬레이션 도구는 ISO 10211의 계산 방법을 따르는 Physibel Trisco를 이용하였다. 해석 부위의 모델링 역시 ISO 10211에서 제시된 기준에 의해 실시하였으며, 경계 온도 조건은 에너지절약설계기준에 따라 실내온도 $20^{\circ}C$, 실외온도 $-11.3^{\circ}C$(서울 기준)로 설정하였다. 구조는 콘크리트구조와 비 목질재료마감, 콘크리트구조와 목질재료마감 그리고 목구조에 목질재료마감의 경우에 따라 구분하였다. 부위는 벽체, 지붕, 층간바닥 및 최하층 바닥 등으로 구분하여 시뮬레이션을 진행하였다. 결과로서, 콘크리트구조의 경우 형상적 원인에 의해, 목구조의 경우 형상적인 원인에 재료적 원인이 더해져 다발적으로 열교가 발생함을 확인할 수 있었다. 추가적으로 콘크리트구조에서는 단열재의 불연속 부위에서 구조적인 열교가 발생하고 목구조에서는 구조적인 열교와 이질재료의 적용 부위에서 재료적 원인에 의한 열교가 발생하는 것을 확인할 수 있었다. 또한 콘크리트 구조에 목질 실내마감재를 적용하였을 경우에는 벽체의 선형 열관류율 값이 감소하는 것을 확인할 수 있었다.

Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

키워드

참고문헌

  1. Chang, K.-K. 2003. Environment-friendly Wood House Architectural Institute of Korea, Review of Architecture and Building Science 47(5): 33-36.
  2. Energy Statistics Handbook, 2014, Korea Energy Management Corporation.
  3. Forsberg, A., von Malmborg, F. 2004. Tools for environmental assessment of the built environment, Building and Environment 39: 223-228. https://doi.org/10.1016/j.buildenv.2003.09.004
  4. Frank, T. 2005. Climate change impacts on building heating and cooling energy demand in Switzerland, Energy and Buildings 37: 1175-1185. https://doi.org/10.1016/j.enbuild.2005.06.019
  5. Kang, Y., Kim, S. 2016. Evaluation of The Hygrothermal Performance by Wall Layer Component of Wooden Houses Using WUFI Simulation Program, Journal of the Korean Wood Science and Technology 44(1): 75-84. https://doi.org/10.5658/WOOD.2016.44.1.75
  6. Ngohe-Ekam, P.S., Meukam, P., Menguy, G., Girard, P. 2006. Thermophysical characterisation of tropical wood used as building materials: With respect to the basal density, Construction and Building materials 20: 929-938. https://doi.org/10.1016/j.conbuildmat.2005.06.017
  7. Seo, J., Wi, S., Kim, S. 2016. Evaluation and Analysis of The Building Energy Saving Performance by Component of Wood Products Using EnergyPlus, Journal of Korean Wood Science and Technology 44(5): 655-663. https://doi.org/10.5658/WOOD.2016.44.5.655
  8. Suleiman, B.M., Larfeldt, J., Leckner, B., Gustavsson, M. 1999. Thermal conductivity and diffusivity of wood, Wood Science and Technology 33: 465-473. https://doi.org/10.1007/s002260050130
  9. Urushizaki, N., Mizuno, M., Shimoda, Y. 2003. The study on life-cycle waste and CO2 emission from countermeasure of long-life building, Journal of Architecture and Planning (Transactions of AIJ) 563: 93-100.
  10. Yu, S.-G., Kim, S., Seo, J., Kim, S. 2013. Analysis of Energy Efficiency of Light-Weigh Wood Frame House and Wooden Passive House Using PHPP, Journal of the Architectural Institute of Korea 29(8): 199-207.