• Title/Summary/Keyword: concrete durability.

Search Result 2,150, Processing Time 0.026 seconds

Properties of Grout Material for Seawall Using Slags from Steel Making Industry (철강산업부산물을 사용한 방조제용 그라우트 재료 및 그 특성)

  • Ha-Seog, Kim;Kee-Seok, Kim;Bong-Hyun, Baek;Sim-Hoon, Yook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.523-530
    • /
    • 2022
  • The problem in the construction of seawall reinforcing the seawall where there is seawater flow is the outflow of materials. Gravity-type pouring of concrete is difficult to fill the voids smoothly, and the cement of concrete that has not hardened is likely to be dispersed in seawater. This phenomenon not only reduces the reliability of quality after concrete hardening, but can also adversely affect the surrounding environment. Therefore, there is a need for a gel-like injection material that can be injected, In this study, the initial strength and durability improvement effect of seawater immersion were evaluated by using electrofurnace reduction slag and blast furnace slag with acute properties. As a result of the experiment, it was possible to prepare a gel-like injection material having flowability through reaction with silica-based chemical liquid. The flowability of the gel is 105~143 mm depending on the formulation, and the on-site simulation test can fill the voids without external leakage, confirming its on-site applicability.

Analysis of Shear Behavior of Reinforced ALWAC Beam Using Interface Elements (계면요소를 이용한 경량철근콘크리트 보의 전단거동해석)

  • Rhee, Inkyu;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.107-115
    • /
    • 2006
  • A challenging topic was and still is the failure behavior of concrete beams without shear reinforcement. In spite of substantial experimental and theoretical efforts in the past, the mechanism of shear failure is not entirely understood. ALWAC is of importance to the current construction industry. Most of present concrete research focuses on high performance concrete, by which in meant a cost effective material that satisfies demanding performance requirements, including durability. The advantages of ALWAC are its reduced mass and improved thermal and acoustic insulation properties, while maintaining adequate strength. In spite of these advantages, its ultimate failure behavior has not been well defined for adequate design process. This paper will investigate mainly the shear behavior of reinforced ALWAC beam without web reinforcements numerically with experimental evidences.

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar (철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가)

  • Tae-Kyun Kim;Jong-Sub Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.458-466
    • /
    • 2023
  • Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.

An Experimental Study on Manufacturing Permeable Concrete Blocks from Recycled Industrial By-Products of Oyster Shell and Blast Furnace Slag (굴패각 및 고로슬래그 산업부산물을 재활용한 콘크리트 투수블록의 제조에 대한 실험적 연구)

  • Seok-Hong Eo;Won-Seok Huh;Sang-Hoon Ha;Chang-Ryeol Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1135-1144
    • /
    • 2023
  • In this paper, bending strength and permeability tests were conducted on concrete permeable blocks manufactured by recycling industrial by-products of oyster shell and blast furnace slag to measure and compare bending strength and permeability coefficient, and present experimental research results. To this end, a total of 54 specimens with a size of 200x200x60mm for surface layer and base layer were manufactured, and bending strength and permeability test were carried ourt accoridng to KS F 4419. Eighteen types of mixing designs were implemented by varying the mixing and replacement rates of oyster shells and blast furnace slag. As a result of the experiment, the higher the mixing ratio of oyster shell, the lower the bending strength and the permeability coefficient. Thereafter, a total of three permeable blocks with dimensions of 200x200x60mm were manufactured and subjected to bending strength and permeability tests according to KS F 4419. As a result of the test, the bending strength satisfies the standard of KS F 4419, and the permeability coefficient is 12 times higher than the standard of KS F 4419. It seems that the proper mixing of oyster shells and blast furnace slag increases the amount of air, and further research on durability and economic feasibility of materials used to manufacture permeable blocks is required.

Preliminary Investigation into the Use of Methyl Methacrylate(MMA)-Based Materials for Road Repair (메틸 메타크릴레이트 기반 도로 보수재 개발을 위한 기초 연구)

  • Ji, Sung-Jun;Pyeon, Su-Jeong;Choi, Byung-Cheol;Kim, Jae-Hwan;Kim, Do-Su;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • This research explores the potential of methyl methacrylate(MMA) as a material for road repair applications. It specifically examines two MMA formulations, referred to as type A and type B, in relation to their performance on concrete substrates. The evaluation criteria included drying time, tensile bond strength, and resistance to alkali. The condition of the substrate surface was varied across three curing environments: constant temperature and humidity(R), immersion in water(W), and immersion in water with chloride ions(N). The findings indicate that type B MMA exhibits a quicker drying time and superior resistance to alkali compared to type A. While type A demonstrated greater tensile bond strength, it failed to maintain adhesion with the concrete base. Based on the parameters tested in this study, type B MMA emerges as the more favorable option for road repair contexts. Nonetheless, the study underscores the necessity for additional testing on asphalt substrates to fully assess the material's durability and applicability for long-term road maintenance.

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Bond Characteristics of FRP sheet to Various Types under Cyclic Load (반복하중하의 FRP 시트 종류에 따른 부착특성)

  • Ko, Hune Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Fiber-reinforced polymer (FRP) sheets have been successfully used to retrofit a number of existing concrete buildings and structures because of their excellent properties (high strength, light weight and high durability). Bond characteristics between FRP sheets and concrete should be investigated to ensure an effective retrofitting system. RC structures strengthened with FRP sheets are often subjected to cyclic load (traffic, seismic, temperature, etc.). This research addresses a local bond stress-slip relationship under cyclic loading conditions for the FRP-concrete interface. 18 specimens were prepared with three types of FRP sheets (aramid, carbon, and polyacetal) and two types of sheet layer(one or two). The characteristics of bond stress-slip were verified through experimental results on load-displacement relationship.

An Experimental Study on the Strength Estimation of Belite Cement Mortar by Microwave Heating (마이크로파를 이용한 저열 포틀랜드(4종)시멘트 모르터의 조기강도 추정에 관한 실험적 연구)

  • 김민석;정근호;이영도;정재영;정상진
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.179-184
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Beilte cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility if site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

Freezing-Thawing Phenomenon and Durability-Improving Method of Plain Concrete Exposed to Outdoor in Winter Season (동절기 옥외 노출 콘크리트의 동결융해 현상과 내구성 증진방안)

  • Lee, Sang Hyun;Kim, Jung Jin;Sung, Cheon Woo
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.18 no.4
    • /
    • pp.2-8
    • /
    • 2014
  • 본 고는 동절기 이후 무근 콘크리트의 상부에서 쉽게 발생하는 스케일링 현상에 주목하여 무근 콘크리트의 동해 발생원인을 고찰하고, 이에 대한 내구성을 향상시키기 위한 방안을 기존문헌조사를 통하여 1) 강도향상, 2) 진공배수공법 적용, 3) 흡수방지재 시공의 방법을 선정하였다. 그 후 각 방법의 동결융해저항성 향상 평가를 정량적으로 평가하기위하여 동결융해 시험을 통한 상대동탄성계수를 측정하였다. 그 결과 1), 2)번의 경우 동탄성계수가 약 15% 향상, 3)의 경우 강도에 따라 7~13%향상됨을 실험적으로 확인하였다. 따라서 상기의 방법 모두 무근 콘크리트의 동결융해 저항성 향상에 유효한 방법으로 판단되며, 이를 통해 무근콘크리트의 빈번히 발생하는 품질저하 및 이로인한 유지보수비용 절감을 도모할 수 있을 것으로 사료된다.

  • PDF

BIM-Based Simulator for Rebar Placement

  • Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.98-107
    • /
    • 2012
  • Reinforcing bars (rebar) comprise an integral part of a concrete structure, and play a major role in the safety and durability of the building. However, the actual placement or installation of rebar is not planned and controlled by the detailer. Recently, 4D simulations, using 3D model and scheduling software, have been used to improve the efficiency of the construction phrase. However, 4D simulators have not been introduced at the detailed level of work, such as rebar placement. Therefore, this paper suggests a BIM-based simulator for rebar placement to determine the sequence with which rebar is placed into the form. The system using Autodesk Revit API automatically generates rebar placement plans for a building structure, and labels the placement sequence of each individual bar or set of bars with ascending numbers. The placement sequence is then visualized using Autodesk Revit Structure 2012. This paper provides a short description of a field assessment and limits.