DOI QR코드

DOI QR Code

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar

철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가

  • Tae-Kyun Kim (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jong-Sub Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 김태균 (한국건설기술연구원 구조연구본부) ;
  • 박종섭 (한국건설기술연구원 구조연구본부)
  • Received : 2023.11.07
  • Accepted : 2023.11.11
  • Published : 2023.12.30

Abstract

Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.

우리 주변의 구조물들은 시간이 지남에 따라 환경적, 화학적 요인에 의해 열화 현상이 발생하며 구조물의 성능저하 현상이 나타난다. 콘크리트 구조물의 가장 큰 열화 현상 원인으로 탄산화, 염해, 동결융해 현상이 있다. 이러한 열화현상에 대하여 다양한 보수공법이 있다. 그러나 기존의 보수 공법에 대한 연구 및 기술개발은 꾸준히 진행되어 왔으나 보수재료와 기술의 정확성 및 실효성 검증은 크게 이루어지지 않았다. 따라서 본 연구에서는 다양한 제조사의 보수재료에 관하여 재료 성능 평가를 수행하였고, 이를 바탕으로 균열과 가장 밀접한 공법에 사용되는 함침제와 에폭시를 적용 하여 탄산화, 염해, 동결융해에 대하여 내구성능 평가를 수행한다. 이 결과 탄산화와 염해는 대략 2배의 성능 개선과 동결융해의 경우 5 %의 보수 성능 향상을 나타낸다. 이처럼 추구 구조물 보수 시 환경적, 화학적 요인에 따라 적절한 보수를 실시한다면 철근 부식을 방지하는데 효과적일 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20230108-001, 친환경 Carbon Eating Concrete(CEC) 제조 및 활용 기술개발).

References

  1. Cheng, Y., Zhang, Y., Jiao, Y., Yang, J. (2016). Quantitative analysis of concrete property under effects of crack, freeze-thaw and carbonation, Construction and Building Materials, 129, 106-115. https://doi.org/10.1016/j.conbuildmat.2016.10.113
  2. Cusson, D., Mailvaganam, N. (1996). Durability of repair materials, Concrete International-Design and Construction, 18(3), 34-38.
  3. Faella, C., Lima, C., Martinelli, E., Pepe, M., Realfonzo, R. (2016). Mechanical and durability performance of sustainable structural concretes: an experimental study, Cement and Concrete Composites, 71, 85-96. https://doi.org/10.1016/j.cemconcomp.2016.05.009
  4. Issa, C.A., Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete, Construction and Building Materials, 21(1), 157-163. https://doi.org/10.1016/j.conbuildmat.2005.06.030
  5. Kim, T.K., Park, J.S., Kim, S.H., Jung, W.T. (2021). Structural behavior evaluation of reinforced concrete using the fiber-reinforced polymer strengthening method, Polymers, 13(5), 780.
  6. Korea Authority of Land & Infrastructure Safety. (2019). Study on the Maintenance and Reinforcement Guidelines(Plan) for Infrastructure(Bridges, Tunnels, etc.), Jinju, Gyeongnam, Korea [In Korean].
  7. KS F 2456. (2023). Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, Korean Standards Association, Seoul, Korea.
  8. KS F 2584. (2010). Standard Test Method for Accelerated Carbonation of Concrete, Korean Standards Association, Seoul, Korea.
  9. KS F 4042. (2022). Polymer Modified Cement Mortar for Maintenance in Concrete Structure, Korean Standards Association, Korea.
  10. KS F 4919. (2018). Cement-Polymer Modified Waterproof Coatings, Korean Standards Association, Seoul, Korea.
  11. KS F 4923. (2022). Epoxy Adhesives for Repairing of Concrete Structure, Korean Standards Association, Seoul, Korea.
  12. KS M 3015. (2018). Testing Methods for Thermosetting Plastics, Korean Standards Association, Korea.
  13. KS M 3821. (2018). Testing Methods for Specific Gravity of Epoxide Resins and Hardeners, Korean Standards Association, Korea.
  14. Kwon, S. J., Park, S. S., Lee, S. M., Kim, J. H. (2007). A study on durability improvement for concrete structures using surface impregnant. Journal of the Korea Institute for Structural Maintenance and Inspection, 11(4), 79-88 [in Korean].
  15. Lee, H.G., Bae, S.H., Lee, H.J., Choi, Y.W., Cho, B.S. (2018). Mechanical properties and resistance to freezing and thawing of concrete using air-cooled ferronickel slag fine aggregate, Journal of the Korean Recycled Construction Resources Institute, 6(4), 319-323 [in Korean].
  16. Liu, P., Yu, Z., Chen, Y. (2020). Carbonation depth model and carbonated acceleration rate of concrete under different environment, Cement and Concrete Composites, 114, 103736.
  17. Mehta, P.K., Monteiro, P.J,M. (2006). CONCRETE (Microstructure, Properties, and Materials), 3rd ed. McGraw Hill, New York, NY, USA.
  18. Meng, C., Li, W., Cai, L., Shi, X., Jiang, C. (2020). Experimental research on durability of high-performance synthetic fibers reinforced concrete: Resistance to sulfate attack and freezing-thawing, Construction and Building Materials, 262, 120055.
  19. NT BUILD 492. (1999). Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments, Korean Standards Association, Finland.
  20. Otieno, M., Ikotun, J., Ballim, Y. (2020). Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment, Construction and Building Materials, 246, 118443.
  21. Park, J.C., Lee, S.W., Kim, S.B., Kim, J.H.J. (2011). Performance evaluation of RC slabs strengthened by stiff type polyurea, KSCE Journal of Civil and Environmental Engineering Research, 31(6A), 457-464 [in Korean].
  22. Sidney, M. Francis, Y. David, D. (2003). CONCRETE, 2nd ed, Prentice Hall, Upper Saddle River, NJ, USA.
  23. Sun, L.F., Jiang, K., Zhu, X., Xu, L. (2020). An alternating experimental study on the combined effect of freeze-thaw and chloride penetration in concrete, Construction and Building Materials, 252, 119025.
  24. Taheri, B.M., Ramezanianpour, A.M., Sabokpa, S., Gapele, M. (2021). Experimental evaluation of freeze-thaw durability of pervious concrete, Journal of Building Engineering, 33, 101617.
  25. Wu, H., Liu, Z., Sun, B., Yin, J. (2016). Experimental investigation on freeze-thaw durability of Portland cement pervious concrete (PCPC), Construction and Building Materials, 117, 63-71. https://doi.org/10.1016/j.conbuildmat.2016.04.130
  26. Xia, J., Chen, K., Hu, S., Chen, J., Wu, R., Jin, W. (2023). Experimental and numerical study on the microstructure and chloride ion transport behavior of concrete-to-concrete interface, Construction and Building Materials, 367, 130317.
  27. Yang, D.H., Kwon, M.J., Eom, G.H., Kim, S.J., Kim, J.H.J. (2018). Experimental evaluation of 2-span arch deck RC composite structure, Journal of the Korea Concrete Institute, 30(4), 353-363 [in Korean]. https://doi.org/10.4334/JKCI.2018.30.4.353
  28. Yu, H., Da, B., Ma, H., Zhu, H., Yu, Q., Ye, H., Jing, X. (2017). Durability of concrete structures in tropical atoll environment. Ocean Engineering, 135, 1-10. https://doi.org/10.1016/j.oceaneng.2017.02.020