• 제목/요약/키워드: concrete crack evaluation

Search Result 362, Processing Time 0.03 seconds

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

Evaluation on the Effect of the Size of Placing Block(L/H) and Elastic Modulus of Base Structure on the Thermal Stress in Mass Concrete (매스콘크리트에서 타설블럭의 크기(L/H)와 구속체의 탄성계수가 온도응력에 미치는 영향에 관한 검토)

  • 강석화;이용호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.275-279
    • /
    • 1996
  • In this study, the effect of external restraint on the thermal stresses and thermal cracking mode in mass concrete are analysed using the two major factors affecting external restraint such as the ratio of width go height of the placed structure (L/H) and the elastic modulus of base structure (E). For this parametric study, many cases with different values of L/H and Er are analysed by the FEM program and the co-relationship of the those major factors is examined. To evaluate the effect of external restraint on the thermal behavior of placing structure, internal restraint stress caused by temperature difference is subtracted from total thermal stress. In the case of small value of L/H or Er, it shows as internally restricted mode indicating maximum tensile stress in surface at early age, and the external restraint makes the possibility of thermal cracking higher. However, in the case of the large values of L/H and Er, the crack index at center is smaller than at surface due to the effect of external restraint. Thus, the initial location of the thermal crack is shifted from the surface to the center and the resulting crack is formed at later age.

  • PDF

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

A Experimental Study on the Repair Performance of Crack Using Chloride ion Penetration (염소이온 투과실험을 이용한 균열보수성능 평가에 관한 시험적 연구)

  • 심종성;문도영;김언경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.503-508
    • /
    • 2001
  • With difference to strengthening which could be evaluated structural efficiency, it is hard to do quantitative repair efficiency evaluation achieved compressive strength test or appearance investigation. In this paper, chloride ion penetration test is exacted to core specimens picked from repaired structure for quantitative repair evaluation. The result of experimentation shows repair efficiency quantitatively by means of difference between penetration amount of chloride ion for repaired and unrepaired core specimens.

  • PDF

Healing Performance of Concrete Containing Hybrid Self-healing Materials (하이브리드 자기치유 소재를 혼입한 콘크리트의 치유성능)

  • Mih-ho, Hwang;Hyuk, Kwon;Hyung-Suk, Kim;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.569-576
    • /
    • 2022
  • In this study, the healing performance of hybrid self-healing concrete was investigated by mixing bacterial pellets(BP) and solid phase capsules(SC), respectively, based on organic-inorganic self-healing material(MC). Constant water head permeability test was applied as a method of evaluating the healing performance, and the healing rate and the healed crack width calculated by the equivalent crack width were used as evaluation indicies. As a result of the water permeability test, when the initial crack width was 0.3 mm, the healing rates of MC-BP and MC-SC were 2.1~3.0 %pt higher than that of MC, and the healed crack width of hybrid concrete increased by 0.017~0.018 mm. In conclusion, it was found that the self-healing performance was not significantly improved even if the two types of healing materials are used together.

Properties of Quality Evaluation for Inorganic Crack Injection Materials (무기계 균열주입재의 품질평가에 관한 연구)

  • 이종열;유재상;정연식;이웅종;양승규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.227-232
    • /
    • 2001
  • In this research we made cement particle with the average size of 4 ${\mu}{\textrm}{m}$ which can penetrate even minor cracks based on the theory of J. K. Michel who reported particles can penetrate the crack of width up to 3 times of maximum particle size. The inorganic crack injection materials were produced by adding superplasticizer. Physical properties of hardened slurry with JIS molds were also tested at 3, 7 and 28 days and the adhesion properties of the slurry in various process conditions were also tested at 3, 7 and 28 days. The cracked specimens which were repaired with slurries produced at various conditions were tested after 3, 7 and 28 days curing in the air and split tensile strength properties were characterized.

  • PDF

Effect of Plant Roots Penetration and Watertightness of Asphalt Sheet according to the Cracks Width of Press Concrete (콘크리트 균열폭에 따른 녹화 식물 뿌리 침입 및 방수층의 수밀성에 미치는 영향)

  • Um, Tae-Ho;Kim, Young-sam;Lee, Jong-suk;Shin, Hong-chul;Kim, Young-geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.112-117
    • /
    • 2016
  • For artificial ground greening construction without root-proofing layer, this research reviewed the effect on watertightness of asphalt waterproofing layer by plant roots penetration based on crack width, and crack penetrated roots. Experiment on concrete crack width was performed with three conditions such as 0.15, 0.30, and 0.45 mm, and all three conditions confirmed that all plant roots penetrations were made through crack area in 12 ~ 18 months. In addition, according to evaluation of effects on waterproofing layer by crack penetrated plant roots and in condition of 0.45 mm crack width, it indicated that penetration is made on asphalt waterproofing layer in 12 months due to roots penetration.

A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types (영상기반 콘크리트 균열 탐지 딥러닝 모델의 유형별 성능 비교)

  • Kim, Byunghyun;Kim, Geonsoon;Jin, Soomin;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.50-57
    • /
    • 2019
  • In this study, various types of deep learning models that have been proposed recently are classified according to data input / output types and analyzed to find the deep learning model suitable for constructing a crack detection model. First the deep learning models are classified into image classification model, object segmentation model, object detection model, and instance segmentation model. ResNet-101, DeepLab V2, Faster R-CNN, and Mask R-CNN were selected as representative deep learning model of each type. For the comparison, ResNet-101 was implemented for all the types of deep learning model as a backbone network which serves as a main feature extractor. The four types of deep learning models were trained with 500 crack images taken from real concrete structures and collected from the Internet. The four types of deep learning models showed high accuracy above 94% during the training. Comparative evaluation was conducted using 40 images taken from real concrete structures. The performance of each type of deep learning model was measured using precision and recall. In the experimental result, Mask R-CNN, an instance segmentation deep learning model showed the highest precision and recall on crack detection. Qualitative analysis also shows that Mask R-CNN could detect crack shapes most similarly to the real crack shapes.

Evaluation of Crack Self-healing Performance in Centrifugal Molding Concrete by Permeability Test (원심성형 콘크리트의 투수시험을 통한 균열 자기치유 성능평가)

  • Hwang, Chul Sung;Woo, Hae Sik;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2018
  • Recently, study on self-healing materials have been performed to increase the life by repairing the damage of structures themselves, which are difficult to repair or require high maintenance costs. A water permeability test has been widely used for the evaluation of self-healing performance. However, in the self-healing performance test method, the initial crack width of the concrete greatly affects on the self-healing performance but it does not have a consistent standard. Therefore, in this study, the correlation between crack and permeability and that between time and permeability were analyzed based on crack width and permeability. In addition, since the initial crack width measured by optical microscope is not reliable, the value is derived from the Poiseuille flow and the tendency of time-permeability and time-crack width are analyzed.

An Evaluation of Plastic and Early Dry Shrinkage of Fiber Reinforced Concrete Using Recycled Aggregate (순환잔골재를 활용한 섬유 보강 콘크리트의 소성 및 초기 건조수축평가)

  • Park, Yun-Mi;Kim, Young-Duck;Kim, Young-Sun;Kim, Ho-Dong;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.937-940
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because generation quantity of construction and demolition waste concrete is greatly increased according to the rapid increasing of urban redevelopment project. On the other hand, the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate by intensification of environment influence evaluation and the shortage of river fine aggregate. but a quality of aggregate as building structure is not demonstrated. Therefore it is the objective of this study to estimate plastic and early dry shrink crack of fiber reinforced concrete using a recycled aggregate by plat-ring test and mock-up test of exposure to the air. as a result, in case of plat- ring test, developing crack is wider using recycled aggregate concrete than natural aggregate concrete, is wider using fiber reinforced concrete than non fiber. in case of mock-up test of exposure to the air, it is similar to plat-ring test.

  • PDF