• Title/Summary/Keyword: concentration-compactness principle

Search Result 6, Processing Time 0.043 seconds

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

POSITIVE SOLUTION AND GROUND STATE SOLUTION FOR A KIRCHHOFF TYPE EQUATION WITH CRITICAL GROWTH

  • Chen, Caixia;Qian, Aixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.961-977
    • /
    • 2022
  • In this paper, we consider the following Kirchhoff type equation on the whole space $$\{-(a+b{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}\;{\mid}{\nabla}u{\mid}^2dx){\Delta}u=u^5+{\lambda}k(x)g(u),\;x{\in}{\mathbb{R}}^3,\\u{\in}{\mathcal{D}}^{1,2}({\mathbb{R}}^3),$$ where λ > 0 is a real number and k, g satisfy some conditions. We mainly investigate the existence of ground state solution via variational method and concentration-compactness principle.

INFINITELY MANY SMALL SOLUTIONS FOR THE p&q-LAPLACIAN PROBLEM WITH CRITICAL SOBOLEV AND HARDY EXPONENTS

  • Liang, Sihua;Zhang, Jihui;Fan, Fan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1143-1156
    • /
    • 2010
  • In this paper, we study the following p&q-Laplacian problem with critical Sobolev and Hardy exponents {$-{\Delta}_pu-{\Delta}_qu={\mu}\frac{{\mid}u{\mid}^{p^*(s)-2}u}{{\mid}x{\mid}^s}+{\lambda}f(x,\;u)$, in $\Omega$, u=0, on $\Omega$, where ${\Omega}\;{\subset}\;\mathbb{R}^{\mathbb{N}}$ is a bounded domain and ${\Delta}_ru=div({\mid}{\nabla}u{\mid}^{r-2}{\nabla}u)$ is the r-Laplacian of u. By using the variational method and concentration-compactness principle, we obtain the existence of infinitely many small solutions for above problem which are the complement of previously known results.

EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRÖ DINGER SYSTEMS WITH STEEP POTENTIAL WELL

  • Lu, Dengfeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.661-677
    • /
    • 2015
  • In this paper, we consider the following Kirchhoff-type Schr$\ddot{o}$dinger system $$\{-\(a_1+b_1{\int}_{\mathbb{R^3}}{\mid}{\nabla}u{\mid}^2dx\){\Delta}u+{\gamma}V(x)u=\frac{2{\alpha}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha-2}u{\mid}v{\mid}^{\beta}\;in\;\mathbb{R}^3,\\-\(a_2+b_2{\int}_{\mathbb{R^3}}{\mid}{\nabla}v{\mid}^2dx\){\Delta}v+{\gamma}W(x)v=\frac{2{\beta}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha}{\mid}v{\mid}^{\beta-2}v\;in\;\mathbb{R}^3,\\u,v{\in}H^1(\mathbb{R}^3),$$ where $a_i$ and $b_i$ are positive constants for i = 1, 2, ${\gamma}$ > 0 is a parameter, V (x) and W(x) are nonnegative continuous potential functions. By applying the Nehari manifold method and the concentration-compactness principle, we obtain the existence and concentration of ground state solutions when the parameter ${\gamma}$ is sufficiently large.

INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH

  • Zhou, Chenxing;Liang, Sihua
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, we prove, in the spirit of [3, 12, 20, 22, 23], the existence of infinitely many small solutions to the following quasilinear elliptic equation $-{\Delta}_{p(x)}u+{\mid}u{\mid}^{p(x)-2}u={\mid}u{\mid}^{q(x)-2}u+{\lambda}f(x,u)$ in a smooth bounded domain ${\Omega}$ of ${\mathbb{R}}^N$. We also assume that $\{q(x)=p^*(x)\}{\neq}{\emptyset}$, where $p^*(x)$ = Np(x)/(N - p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountainpass lemma due to Kajikiya [22], and property of these solutions are also obtained.

Application to Gas Sensors by Electron Emission from Carbon Nanotube Emitters (탄소나노튜브 전극으로부터 전계방출을 이용한 가스센서의 응용)

  • Kim Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.405-410
    • /
    • 2006
  • We fabricated gas sensors using carbon nanotubes (CNTs) as electron emitters for the purpose of detecting inert gases. By using the silicon-glass anodic bonding and glass patterning technologies with the typical Si process, we improved the compactness of the sensors and the reliability in process. The proposed sensor, based on, an electrical discharge theory known as Paschen's law in principle, works by figuring the variation of the discharge current depending on gas concentration. In the experiment, the initial breakdown characteristics were measured for air and Ar as a function of gas pressure. As the result, even though it should be realized that there are many other factors which have an effect on the breakdown of a gap, the sensors led to similar result as predicted by Paschen's law, and they showed a possibility as gas sensors which enable to detect the gas density ranged to the vacuum pressure from 1 to $10^{-3}$ Torr.