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EXISTENCE AND CONCENTRATION RESULTS FOR

KIRCHHOFF-TYPE SCHRÖDINGER SYSTEMS

WITH STEEP POTENTIAL WELL

Dengfeng Lü

Abstract. In this paper, we consider the following Kirchhoff-type
Schrödinger system





−

(
a1 + b1

∫

R3
|∇u|

2
dx

)
∆u+ γV (x)u =

2α

α+ β

|u|
α−2

u|v|
β in R3

,

−

(
a2 + b2

∫

R3
|∇v|

2
dx

)
∆v + γW (x)v =

2β

α+ β

|u|
α
|v|

β−2
v in R3

,

u, v ∈ H
1(R3),

where ai and bi are positive constants for i = 1, 2, γ > 0 is a parameter,
V (x) and W (x) are nonnegative continuous potential functions. By ap-
plying the Nehari manifold method and the concentration-compactness
principle, we obtain the existence and concentration of ground state so-
lutions when the parameter γ is sufficiently large.

1. Introduction and main results

Let us consider the following Kirchhoff-type Schrödinger system in R
3:

(KS)γ


























−
(

a1 + b1

∫

R3

|∇u|2dx
)

∆u+ γV (x)u =
2α

α+ β
|u|α−2u|v|β in R3,

−
(

a2 + b2

∫

R3

|∇v|2dx
)

∆v + γW (x)v =
2β

α+ β
|u|α|v|β−2v in R3,

u, v ∈ H1(R3),

where ai and bi are positive constants for i = 1, 2, γ > 0 is a parameter, α > 2,
β > 2 satisfy α + β < 2∗ = 6, and V (x),W (x) are nonnegative continuous
potential functions on R3.
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In recent years, many papers have extensively considered the scalar Kirch-
hoff-type equation

(1.1)







−
(

a+ b

∫

Ω

|∇u|2dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where a and b are positive constants and Ω ⊂ R3 is a smooth bounded domain.
For example, Ma and Rivera [13] obtained positive solutions of (1.1) by using
variational methods. Alves, Corrêa and Ma [1] studied problem (1.1) and
obtained positive solutions via the mountain pass theorem. Perera and Zhang
[15] obtained a nontrivial solution of (1.1) via Yang index and critical group.
Mao and Zhang [14] obtained three solutions by the invariant sets of descent
flow. He and Zou [7] showed existence of infinitely many solutions by using the
local minimum methods and the fountain theorems. Cheng and Wu [5] studied
the existence of positive solutions for problem (1.1) when the nonlinearity f is
asymptotically t3-growth at infinity. We also note that problem (1.1) is related
to the stationary analogue of the equation

(1.2) ρ
∂2u

∂t2
−

(

P0

h
+

E

2L

∫ L

0

∣

∣

∣

∂u

∂x

∣

∣

∣

2

dx

)

∂2u

∂x2
= 0,

where ρ, P0, h, E, L are constants. The equation (1.2) was proposed by Kirch-
hoff in [9] as an extension of the classical D’Alembert wave equation for free
vibrations of elastic strings. Kirchhoff’s model considers the changes in length
of the string produced by transverse vibrations. Problem (1.2) began to call
attention of several researchers after the pioneer work of Lions [10], where a
functional analysis approach was proposed. It is pointed in [1] that the prob-
lem (1.2) model may describe some physical and biological systems, where u
denotes a process which depends on the average of itself.

On the other hand, the following Kirchhoff-type equation

(1.3)















−
(

a+ b

∫

R3

|∇u|2dx
)

∆u+ V (x)u = f(x, u) in R3,

u ∈ H1(R3),

has also been investigated by many authors. In [18], by applying symmetric
mountain pass theorem, the author obtained the existence results for nontrivial
solutions and a sequence of high energy solutions for problem (1.3). Subse-
quently, Liu and He [12] proved the existence of infinitely many high energy
solutions for (1.3) when f is a subcritical nonlinearity which does’t need to sat-
isfy the usual Ambrosetti-Rabinowitz-type growth conditions. More recently,
by using variational methods, Sun and Wu [16] obtained the existence and
concentration of ground state solutions for (1.3) when V (x) was replaced by
λV (x), where λ is a positive parameter. We would also mention the recent
papers [19, 20] where the existence of high energy solutions for Kirchhoff-type
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Schrödinger systems was established. For more related works, one can also see
[3, 4, 8, 17] and the references therein.

Motivated by the works mentioned above, in the present paper we will study
a class of Kirchhoff-type Schrödinger systems with steep potential well in R

3.
Such problems are often referred to as being nonlocal because of the presence
of the terms (

∫

R3 |∇u|
2dx)∆u and (

∫

R3 |∇v|
2dx)∆v which imply that prob-

lem (KS)γ is no longer pointwise identity. This phenomenon provokes some
mathematical difficulties, which motivate the study of such a class of partic-
ularly interesting problems. The existence and concentration of ground state
solutions of (KS)γ are obtained by applying the Nehari manifold method and
concentration-compactness principle.

Before stating our main results, we need to introduce some assumptions and
notations:
(H1) V (x),W (x) ∈ C(R3, [0,+∞)) and Ω := int(V −1(0)) = int(W−1(0)) is
nonempty with smooth boundary and Ω = V −1(0) =W−1(0);
(H2) there exist M1,M2 > 0 such that L({x ∈ R3|V (x) ≤ M1}) < ∞, L({x ∈
R3|W (x) ≤M2}) <∞, where L denotes the Lebesgue measure in R3.

The conditions (H1) and (H2) imply that γV (x) and γW (x) represent po-
tential well whose depth is controlled by γ. γV (x) and γW (x) are called
steep potential well if γ is sufficiently large, and one expects to find solutions
which localize near its bottom Ω. The hypothesis (H2) was first introduced
by Bartsch and Wang [2] in the study of a nonlinear Schrödinger equation.
Let EV := {u ∈ H1(R3) :

∫

R3 V (x)u2dx < +∞} and EW := {v ∈ H1(R3) :
∫

R3 W (x)v2dx < +∞} with the norms ‖u‖2γ,V =
∫

R3(a1|∇u|
2 + γV (x)u2)dx

and ‖v‖2γ,W =
∫

R3(a2|∇v|
2 + γW (x)v2)dx respectively. For any given γ > 0,

we consider the Hilbert space E := EV × EW endowed with the norm

‖(u, v)‖γ =
(

‖u‖2γ,V + ‖v‖2γ,W
)

1
2 .

The energy functional associated with (KS)γ is defined on E by

Eγ(u, v) =
1

2
‖(u, v)‖2γ +

1

4
(b1Υ

2(u) + b2Υ
2(v)) −

2

α+ β

∫

R3

|u|α|v|βdx,

where Υ(w) =
∫

R3 |∇w|
2dx. In view of the assumptions (H1) and (H2), the

energy functional Eγ(u, v) is well defined and belongs to C1(E,R), and that

〈E ′

γ(u, v), (ϕ, ψ)〉 =
(

a1 + b1

∫

R3

|∇u|2dx
)

∫

R3

∇u∇ϕdx

+
(

a2 + b2

∫

R3

|∇v|2dx
)

∫

R3

∇v∇ψdx

+ γ

∫

R3

(

V (x)uϕ+W (x)vψ
)

dx

−
2

α+ β

∫

R3

(

α|u|α−2|v|βuϕ+ β|u|α|v|β−2vψ
)

dx.
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Hence, if (u, v) ∈ E is a critical point of Eγ(u, v), then (u, v) is a solution of
problem (KS)γ .

We define the minimax cγ as

(1.4) cγ = inf
(u,v)∈Nγ

Eγ(u, v),

where

Nγ =
{

(u, v) ∈ E \ {(0, 0)} : 〈E ′

γ(u, v), (u, v)〉 = 0
}

,

〈·, ·〉 is the duality product between E and its dual space E−1. Note that Nγ

contains every nonzero solution of problem (KS)γ .
A ground state solution for (KS)γ is a critical point (u0, v0) of Eγ(u, v) in E

which solves the following minimization problem

inf
(u,v)∈Nγ

Eγ(u, v) = Eγ(u0, v0).

The main results we get are the following:

Theorem 1.1. Suppose that (H1) and (H2) hold, then there is γ∗ > 0 such

that, for all γ ≥ γ∗, the system (KS)γ has at least a ground state solution

(uγ , vγ) in H
1(R3)×H1(R3).

Theorem 1.2. For each γ > 0 large, let (uγ , vγ) be the solutions obtained in

Theorem 1.1. Then (uγ , vγ) → (u, v) as γ → ∞, where (u, v) is a nontrivial

solution of


























−
(

a1 + b1

∫

Ω

|∇u|2dx
)

∆u =
2α

α+ β
|u|α−2u|v|β in Ω,

−
(

a2 + b2

∫

Ω

|∇v|2dx
)

∆v =
2β

α+ β
|u|α|v|β−2v in Ω,

u(x) = 0, v(x) = 0 on ∂Ω.

As far as we know, problem (KS)γ has not been considered before. In
order to prove the main results, we have to overcome some difficulties in using
variational methods. The main difficulties lie in the appearance of the nonlocal
term and the lack of compactness due to the unboundedness of the domain R3.
Since we neither assume that the potentials are radially symmetric nor impose
any other hypotheses on the behavior of the potentials for |x| → ∞, we can
not use the usual way to recover compactness. To recover the compactness, we
adopt the idea used in [2] and establish the compactness conditions dependent
of parameter. Let us point out that the adaptation of the idea to our problem is
not trivial at all because of the presence of the nonlocal terms (

∫

R3 |∇u|
2dx)∆u,

(
∫

R3 |∇v|
2dx)∆v and the coupled terms |u|α−2u|v|β, |u|α|v|β−2v.

This paper is organized as follows. In Section 2, we will prove some impor-
tant lemmas that will be used for the proofs of the main results. Section 3 is
devoted to the proofs of Theorems 1.1 and 1.2.
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2. Preliminaries

Notation. In this paper we will use the following notations:

• C,C1, C2, . . . denote positive(possibly different) constants.
• → (respectively ⇀) denotes strong (respectively weak) convergence.
• on(1) denotes on(1) → 0 as n→ ∞.
• Ls(Ω)(1 ≤ s < +∞) denote Lebesgue spaces, the norm Ls is denoted
by | · |s for 1 ≤ s < +∞.

• For given set K ⊂ R3, we set Kc = R3\K.
• Br denotes a ball centered at the origin with radius r > 0.
• The dual space of a Banach space E will be denoted by E−1.
• 〈·, ·〉 denote the duality pairing between E−1 and E.

The functional I ∈ C1(E,R) is said to satisfy the (PS)c condition if any
sequence {zn} ⊂ E such that as n → ∞, I(zn) → c, I ′(zn) → 0 strongly in
E−1 contains a subsequence converging in E to a critical point of I. In this
paper, we will take I = Eγ(u, v) and E = EV × EW .

Lemma 2.1. Under the conditions (H1) and (H2), the following hold:
(i) Let (u, v) ∈ Nγ , then there exists σ > 0 which is independent of γ such

that ‖(u, v)‖γ ≥ σ.

(ii) For each (u, v) ∈ E \ {(0, 0)}, there is a unique t(u,v) > 0 such that

t(u,v)(u, v) ∈ Nγ . Moreover, Eγ(t(u,v)(u, v)) = max
t≥0

Eγ(t(u, v)).

Proof. (i) First, by Young inequality, we get

|u|α|v|β ≤
α

α+ β
|u|α+β +

β

α+ β
|v|α+β ,

then by the continuity of the Sobolev embedding EV →֒ Ls(R3) and EW →֒
Ls(R3) for 2 ≤ s ≤ 6 , we obtain

∫

R3

|u|α|v|βdx ≤
α

α+ β

∫

R3

|u|α+βdx +
β

α+ β

∫

R3

|v|α+βdx

≤ C1‖u‖
α+β
V + C2‖v‖

α+β
W ≤ C‖(u, v)‖α+βγ ,(2.1)

where C > 0 is independent of γ. So, by (2.1), for any (u, v) ∈ Nγ , we have

0 = 〈E ′

γ(u, v), (u, v)〉 = ‖(u, v)‖2γ + b1Υ
2(u) + b2Υ

2(v)− 2

∫

R3

|u|α|v|βdx

≥ ‖(u, v)‖2γ − 2C‖(u, v)‖α+βγ .(2.2)

Note that α+ β > 4, thus there exists σ > 0 such that ‖(u, v)‖γ ≥ σ.
(ii) Let (u, v) ∈ E \ {(0, 0)} be fixed. For t > 0, we consider the fibering

maps φ : t→ Eγ(t(u, v)) defined by

φ(t) := Eγ(t(u, v))=
t2

2
‖(u, v)‖2γ+

t4

4
(b1Υ

2(u)+b2Υ
2(v))−

2tα+β

α+ β

∫

R3

|u|α|v|βdx.
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We observe that φ′(t) = 〈E ′

γ(t(u, v)), (u, v)〉 = 0 if and only if t(u, v) ∈ Nγ .
First we claim that φ(t) > 0 for t > 0 small. Indeed, by (2.1), we have that

φ(t) ≥
t2

2
‖(u, v)‖2γ −

2tα+β

α+ β

∫

R3

|u|α|v|βdx

≥
t2

2
‖(u, v)‖2γ − C3t

α+β‖(u, v)‖α+βγ ,

since α+β > 4, so φ(t) > 0 whenever t > 0 is small enough. It is easy to see that
φ(t) → −∞ as t → +∞. Hence there exists t(u,v) > 0 such that φ′(t(u,v)) = 0,
that is t(u,v)(u, v) ∈ Nγ . Moreover, Eγ(t(u,v)(u, v)) = max

t≥0
Eγ(t(u, v)).

In addition, the condition φ′(t) = 0 is equivalent to

(2.3) b1Υ
2(u) + b2Υ

2(v) = −
1

t2
‖(u, v)‖2γ + 2tα+β−4

∫

R3

|u|α|v|βdx.

The right side of (2.3) is strictly increasing for t > 0 recalling that α + β > 4,
so there exists a unique t(u,v) > 0 such that φ′(t(u,v)) = 0, and the second
conclusion follows. �

Lemma 2.2. Let (H1) − (H2) hold and {(un, vn)} is a (PS)c sequence for

Eγ(u, v). Then we have

(i) {(un, vn)} is bounded in E;
(ii) if c 6= 0, then c ≥ c0, for some c0 > 0 is independent of γ.

Proof. Let {(un, vn)} be a (PS)c sequence for Eγ(u, v), that is,

Eγ(un, vn) = c+ on(1) and E ′

γ(un, vn) = on(1).

Then we have,

c+ on(1)−
1

4
on(‖(un, vn)‖γ) = Eγ(un, vn)−

1

4
〈E ′

γ(un, vn), (un, vn)〉

=
1

2
‖(un, vn)‖

2
γ +

(1

2
−

2

α+ β

)

∫

R3

|un|
α|vn|

βdx

≥
1

2
‖(un, vn)‖

2
γ ,(2.4)

which implies that {(un, vn)} is bounded in E.
On the other hand, we have

on(‖(un, vn)‖γ) = 〈E ′

γ(un, vn), (un, vn)〉

= ‖(un, vn)‖
2
γ + b1Υ

2(un) + b2Υ
2(vn)− 2

∫

R3

|un|
α|vn|

βdx

≥ ‖(un, vn)‖
2
γ − 2C‖(un, vn)‖

α+β
γ ,
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since α+ β > 4, there exists 0 < σ1 < 1 such that

(2.5) 〈E ′

γ(un, vn), (un, vn)〉 ≥
1

4
‖(un, vn)‖

2
γ for ‖(un, vn)‖γ < σ1.

Now, if c <
σ2
1

2 and {(un, vn)} is a (PS)c-sequence of Eγ , then by (2.4)

lim
n→∞

‖(un, vn)‖
2
γ ≤ 2c < σ2

1 .

Hence, ‖(un, vn)‖γ < σ1 for n large, then by (2.5)

1

4
‖(un, vn)‖

2
γ ≤ 〈E ′

γ(un, vn), (un, vn)〉 = on(1)‖(un, vn)‖γ ,

which implies ‖(un, vn)‖γ → 0 as n → ∞ and c = 0. It follows that (ii) holds

for c0 =
σ2
1

2 . �

Lemma 2.3. Let C∗ be fixed. Given ε > 0 there exist Γε = Γ(ε, C∗) > 0 and

ρε = ρ(ε, C∗) > 0 such that, if {(un, vn)} is a (PS)c-sequence of Eγ(u, v) with

c ≤ C∗, γ ≥ Γε, then

(2.6) lim sup
n→∞

∫

Bc
ρε

|un|
α|vn|

βdx ≤ ε.

Proof. For ρ > 0, we set

A(ρ) :={x ∈ R
3 : |x| ≥ ρ, V (x) ≥M1}, B(ρ) :={x ∈ R

3 : |x| ≥ ρ, V (x) < M1},

then
∫

A(ρ)

|un|
2dx ≤

1

γM1

∫

R3

γV (x)u2ndx

≤
1

γM1

∫

R3

(a1|∇un|
2 + γV (x)u2n)dx

≤
1

γM1

(

2c+ on(‖(un, vn)‖γ)
)

≤
1

γM1

(

2C∗ + on(‖(un, vn)‖γ)
)

→ 0 as γ → ∞.(2.7)

Using the Hölder inequality and (2.4), for 1 < q < 3 we obtain
∫

B(ρ)

|un|
2dx ≤

(

∫

R3

|un|
2qdx

)
1
q

· L(B(ρ))
q−1
q

≤ C4‖un‖
2
H1(R3) · L(B(ρ))

q−1
q

≤ C4 · 2C
∗ · L(B(ρ))

q−1
q → 0 as ρ→ ∞,(2.8)
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where C4 = C4(q) is a positive constant. Setting θ = 3(α+β−2)
2(α+β) , by using the

Gagliardo-Nirenberg inequality, (2.7) and (2.8), we obtain that
∫

Bc
ρ

|un|
α+βdx ≤ C

(

∫

Bc
ρ

|∇un|
2dx

)

(α+β)θ
2

·
(

∫

Bc
ρ

|un|
2dx

)

(α+β)(1−θ)
2

≤ C5‖(un, vn)‖
(α+β)θ
γ ·

(

∫

A(ρ)

|un|
2dx+

∫

B(ρ)

|un|
2dx

)

(α+β)(1−θ)
2

≤ C6

(

∫

A(ρ)

|un|
2dx+

∫

B(ρ)

|un|
2dx

)

(α+β)(1−θ)
2

→ 0 as γ, ρ→ ∞.(2.9)

Similarly,

(2.10)

∫

Bc
ρ

|vn|
α+βdx ≤ ε for γ, ρ large.

At last, using the Hölder inequality, (2.9) and (2.10) we have that

lim sup
n→∞

∫

Bc
ρε

|un|
α|vn|

βdx

≤ lim sup
n→∞

(

∫

Bc
ρε

|un|
α+βdx

)
α

α+β
(

∫

Bc
ρε

|vn|
α+βdx

)
β

α+β

≤ ε.

This concludes the proof of Lemma 2.3. �

The following Brézis-Lieb type lemma is proved in [6].

Lemma 2.4. Let α + β < 2∗ and {(un, vn)} ⊂ E is a sequence such that

(un, vn)⇀ (u, v) weakly in E. Then we have
∫

R3

|un|
α|vn|

βdx−

∫

R3

|un − u|α|vn − v|βdx =

∫

R3

|u|α|v|βdx+ on(1).

Lemma 2.5. Let γ > 0 be fixed and {(un, vn)} is a (PS)c-sequence of Eγ.
Then up to a subsequence (un, vn) ⇀ (u, v) in E with (u, v) being a weak

solution of (KS)γ. Moreover, {(un − u, vn − v)} is a (PS)d-sequence for Eγ
with d = c− Eγ(u, v).

Proof. Since {(un, vn)} is bounded in E (see Lemma 2.2(i)), there is a subse-
quence of {(un, vn)} such that (un, vn) ⇀ (u, v) in E as n → ∞. In order to
see that (u, v) is a critical point of Eγ we recall that











(un, vn)⇀ (u, v), in E,

(un, vn) → (u, v), a.e. in R3,

(un, vn) → (u, v), in Ls1loc(R
3)× Ls2loc(R

3), 2 ≤ s1, s2 < 6.

Moreover, there exist A,B ∈ R, such that
∫

R3

|∇un|
2dx→ A,

∫

R3

|∇vn|
2dx→ B,
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then by the Fatou’s lemma we get that
∫

R3

|∇u|2dx ≤ A,

∫

R3

|∇v|2dx ≤ B.

We claim that
∫

R3 |∇u|
2dx = A, and

∫

R3 |∇v|
2dx = B. Arguing by contradic-

tion, we assume that
∫

R3 |∇u|
2dx < A or

∫

R3 |∇v|
2dx < B. By E ′

γ(un, vn) → 0
and (un, vn)⇀ (u, v) in E, for any (ϕ, ψ) ∈ E, we have
∫

R3

(a1∇u∇ϕ+ a2∇v∇ψ)dx + γ

∫

R3

V (x)uϕ+W (x)vψdx +Ab1

∫

R3

∇u∇ϕdx

+Bb2

∫

R3

∇v∇ψdx −
2

α+ β

∫

R3

(α|u|α−2u|v|βϕ+ β|u|α|v|β−2vψ)dx = 0.

Then 〈E ′

γ(u, v), (u, v)〉 < 0. On the other hand, by Lemma 2.1(ii) it is easy
to get that 〈E ′

γ(t(u, v)), t(u, v)〉 > 0 for t > 0 is small enough. Hence there
exists t0 ∈ (0, 1) satisfying 〈E ′

γ(t0(u, v)), t0(u, v)〉 = 0. Moreover, Eγ(t0(u, v)) =
max0≤t≤1 Eγ(t(u, v)), so

cγ ≤ Eγ(t0(u, v)) = Eγ(t0(u, v))−
1

4
〈E ′

γ(t0(u, v)), t0(u, v)〉

=
t20
4
‖(u, v)‖2γ +

(1

2
−

2

α+ β

)

t
α+β
0

∫

R3

|u|α|v|βdx

<
1

4
‖(u, v)‖2γ +

(1

2
−

2

α+ β

)

∫

R3

|u|α|v|βdx

≤ lim inf
n→∞

(

1

4
‖(un, vn)‖

2
γ +

(1

2
−

2

α+ β

)

∫

R3

|un|
α|vn|

βdx

)

= lim inf
n→∞

(

Eγ(un, vn)−
1

4
〈E ′

γ(un, vn), (un, vn)〉
)

= cγ ,

which is a contradiction. Then
∫

R3

|∇u|2dx = A = lim
n→∞

∫

R3

|∇un|
2dx,

∫

R3

|∇v|2dx = B = lim
n→∞

∫

R3

|∇vn|
2dx.

Thus for any (ϕ, ψ) ∈ E, we have

〈E ′

γ(u, v), (ϕ, ψ)〉 = lim
n→∞

〈E ′

γ(un, vn), (ϕ, ψ)〉 = 0.

So (u, v) is a critical point of of Eγ , that is (u, v) is a weak solution of (KS)γ .
We consider a new sequence (ũn, ṽn) = (un− u, vn− v). Now we verify that

(2.11) Eγ(ũn, ṽn) = c− Eγ(u, v) as n→ ∞

and

(2.12) E ′

γ(ũn, ṽn) → 0 as n→ ∞.

By the Brézis-Lieb lemma, we have that

‖(ũn, ṽn)‖
2
γ = ‖(un, vn)‖

2
γ − ‖(u, v)‖2γ + on(1),
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(

∫

R3

|∇ũn|
2dx

)2

=
(

∫

R3

|∇un|
2dx

)2

−
(

∫

R3

|∇u|2dx
)2

+ on(1),

(

∫

R3

|∇ṽn|
2dx

)2

=
(

∫

R3

|∇vn|
2dx

)2

−
(

∫

R3

|∇v|2dx
)2

+ on(1).

To show (2.11) we observe

Eγ(ũn, ṽn) =
1

2

∫

R3

(a1|∇ũn|
2 + γV (x)|ũn|

2)dx

+
1

2

∫

R3

(a2|∇ṽn|
2 + γW (x)|ṽn|

2)dx

+
1

4

(

b1

(

∫

R3

|∇ũn|
2dx

)2

+ b2

(

∫

R3

|∇ṽn|
2dx

)2
)

−
2

α+ β

∫

R3

|ũn|
α|ṽn|

βdx

= Eγ(un, vn)− Eγ(u, v) + on(1)

+
2

α+ β

(

∫

R3

|un|
α|vn|

βdx −

∫

R3

|u|α|v|βdx−

∫

R3

|ũn|
αṽn|

βdx
)

.(2.13)

From Lemma 2.4,
∫

R3 |un|
α|vn|βdx −

∫

R3 |u|
α|v|βdx −

∫

R3 |ũn|
α|ṽn|βdx → 0 as

n→ ∞. Thus from (2.13) we obtain (2.11).
In order to show (2.12), let (ϕ, ψ) ∈ E. We note that

〈E ′

γ(ũn, ṽn), (ϕ, ψ)〉 = 〈E ′

γ(un, vn), (ϕ, ψ)〉 − 〈E ′

γ(u, v), (ϕ, ψ)〉

−
2α

α+ β

∫

R3

|ũn|
α−2|ṽn|

β ũnϕdx

−
2β

α+ β

∫

R3

|ũn|
α|ṽn|

β−2ṽnψdx

+
2α

α+ β

∫

R3

|un|
α−2|vn|

βunϕdx

+
2β

α+ β

∫

R3

|un|
α|vn|

β−2vnψdx

−
2α

α+ β

∫

R3

|u|α−2|v|βuϕdx

−
2β

α+ β

∫

R3

|u|α|v|β−2vψdx.(2.14)

Since E ′

γ(un, vn) → 0 and un → u, vn → v in Ls(R3)(2 ≤ s < 6), we have

lim
n→∞

sup
‖ϕ‖γ,V ≤1

∫

R3

(

|ũn|
α−2|ṽn|

β ũn − |un|
α−2|vn|

βun + |u|α−2|v|βu
)

ϕdx = 0,

lim
n→∞

sup
‖ψ‖γ,W≤1

∫

R3

(

|ũn|
α|ṽn|

β−2ṽn − |un|
α|vn|

β−2vn + |u|α|v|β−2v
)

ψdx = 0.



KIRCHHOFF-TYPE SCHRÖDINGER SYSTEMS 671

Thus from (2.14) we obtain that

lim
n→∞

〈E ′

γ(ũn, ṽn), (ϕ, ψ)〉 = 0, ∀ (ϕ, ψ) ∈ E,

which implies (2.12) and this completes the proof of Lemma 2.5. �

Then we have the following compactness result.

Lemma 2.6. Suppose that (H1) and (H2) hold. Then for any C0 > 0, there
exists Γ0 > 0 such that Eγ satisfies the (PS)c-condition for all c ≤ C0 and

γ ≥ Γ0.

Proof. Let c0 > 0 be given by Lemma 2.2(ii) and choose ε > 0 such that

ε <
c0(α+β)
α+β−2 . Then for the given C0 > 0, we choose Γε > 0 and ρε > 0

in Lemma 2.3. We claim that Γ0 = Γε is as required in Lemma 2.6. Let
{(un, vn)} ⊂ E be a (PS)c-sequence of Eγ(u, v) with c ≤ C0 and γ ≥ Γ0.
By Lemma 2.5, we may suppose that (un, vn) ⇀ (u, v) weakly in E and then
{(ũn, ṽn)} = {(un−u, vn− v)} is a (PS)d-sequence of Eγ with d = c−Eγ(u, v).
We claim that d = 0. Arguing by contradiction, assume that d 6= 0. Lemma
2.2(ii) implies that d ≥ c0 > 0. Since (ũn, ṽn) is a (PS)d-sequence of Eγ , we
have

Eγ(ũn, ṽn) = d+ on(1), E ′

γ(ũn, ṽn) = on(1).

Then we get

d+ on(1)−
1

2
on(‖(un, vn)‖γ) = Eγ(ũn, ṽn)−

1

2
〈E ′

γ(ũn, ṽn), (ũn, ṽn)〉

= −
1

4
(b1Υ

2(ũn) + b2Υ
2(ṽn))

+
(

1−
2

α+ β

)

∫

R3

|ũn|
α|ṽn|

βdx

≤
(

1−
2

α+ β

)

∫

R3

|ũn|
α|ṽn|

βdx.(2.15)

From (2.15) we deduce that

lim
n→∞

∫

R3

|ũn|
α|ṽn|

βdx ≥ d
(

1−
2

α+ β

)

−1

≥
α+ β

α+ β − 2
c0.

On the other hand, Lemma 2.3 implies

lim sup
n→∞

∫

Bc
ρε

|ũn|
α|ṽn|

βdx ≤ ε <
c0(α+ β)

α+ β − 2
.

This implies (ũn, ṽn)⇀ (ũ, ṽ) in E with (ũ, ṽ) 6= (0, 0), which is a contradiction.
Therefore d = 0 and it follows from (2.4) that

lim
n→∞

‖(ũn, ṽn)‖
2
γ ≤ 2d = 0,

hence (ũn, ṽn) → (0, 0) in E, that is, (un, vn) → (u, v) in E. This completes
the proof of Lemma 2.6. �
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3. Proof of the main results

In this section we give the proofs of our main results. First, we give the
proof of Theorem 1.1.

Proof of Theorem 1.1. First, we can check that Eγ satisfies the mountain-pass
geometry. Then using a version of the mountain-pass theorem without (PS)
condition, there exists {(un, vn)} ⊂ E satisfying

Eγ(un, vn) → cγ and E ′

γ(un, vn) → 0.

Moreover, by Lemma 2.2(i) {(un, vn)} is bounded in E. Then, up to a subse-
quence, (un, vn)⇀ (u, v) weakly in E and (un, vn) → (u, v) a.e. in x ∈ R3. By
Lemma 2.6, there exists γ∗ > 0, such that (un, vn) → (u, v) in E for γ ≥ γ∗.
Furthermore, by Lemma 2.5 we have that E ′

γ(u, v) = 0. By Lemma 2.1(i), we
know that (u, v) 6= (0, 0), then (u, v) ∈ Nγ , and using the Fatou’s lemma we
get

Eγ(u, v) = Eγ(u, v)−
1

4
〈E ′

γ(u, v), (u, v)〉

=
1

4
‖(u, v)‖2γ +

(1

2
−

2

α+ β

)

∫

R3

|u|α|v|βdx

≤ lim inf
n→∞

(

1

4
‖(un, vn)‖

2
γ +

(1

2
−

2

α+ β

)

∫

R3

|un|
α|vn|

βdx)

)

= lim inf
n→∞

(

Eγ(un, vn)−
1

4
〈E ′

γ(un, vn), (un, vn)〉
)

= cγ .

Hence, Eγ(u, v) ≤ cγ . On the other hand, from the definition of cγ , we have
cγ ≤ Eγ(u, v). So, Eγ(u, v) = cγ , that is (u, v) is a ground state solution of
problem (KS)γ . �

In order to investigate the concentration for the solutions obtained in The-
orem 1.1, we consider the following Kirchhoff-type system:

(KS)∞



























−
(

a1 + b1

∫

Ω

|∇u|2dx
)

∆u =
2α

α+ β
|u|α−2u|v|β in Ω,

−
(

a2 + b2

∫

Ω

|∇v|2dx
)

∆v =
2β

α+ β
|u|α|v|β−2v in Ω,

u(x) = 0, v(x) = 0 on ∂Ω,

where Ω = int(V −1(0)) = int(W−1(0)). The energy functional associated with
(KS)∞ is defined by

E∞(u, v) =
1

2

∫

Ω

(

a1|∇u|
2 + a2|∇v|

2)
)

dx

+
1

4

(

b1

(

∫

Ω

|∇u|2dx
)2

+b2

(

∫

Ω

|∇v|2dx
)2

)

−
2

α+ β

∫

Ω

|u|α|v|βdx.
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Let

M := {(u, v) ∈ (H1
0 (Ω)×H1

0 (Ω))\{(0, 0)} : 〈E ′

∞
(u, v), (u, v)〉 = 0}

be the manifold and c∞ = inf
(u,v)∈M

E∞(u, v).

Let us point out that the same results hold with E∞, c∞, M in place of
Eγ , cγ , Nγ , respectively. We note that condition (H2) implies that the Sobolev
imbedding H1

0 (Ω) ×H1
0 (Ω) →֒ Ls1(Ω) × Ls2(Ω) is compact for 2 ≤ s1, s2 < 6,

and hence the following Lemma 3.1 is standard.

Lemma 3.1. The infimum c∞ is achieved by a pair of functions (u, v) ∈ M
which is a ground state solution of (KS)∞.

Lemma 3.2. lim
γ→+∞

cγ = c∞, where cγ is defined in (1.4).

Proof. It is easy to see that cγ ≤ c∞ for all γ ≥ 0. We assume limn→∞ cγn =
k < c∞ for a sequence γn → ∞ as n → ∞. Lemma 2.2 implies k > 0. We
assume that {(un, vn)} such that cγn is achieved. By Lemma 2.2(i), {(un, vn)}
is bounded in E, we may assume that

(3.1)

{

(un, vn)⇀ (u, v), in E,

(un, vn) → (u, v), in Ls1loc(R
3)× Ls2loc(R

3), 2 ≤ s1, s2 < 6.

Now we claim that (u, v)|Ωc = (0, 0). In fact, if (u, v)|Ωc 6= (0, 0), there exists a
compact subset D ⊂ Ωc with dist(D, ∂Ω) > 0 such that (u, v)|D 6= (0, 0). Then
by (3.1)

∫

D

|un|
2dx→

∫

D

|u|2dx > 0,

∫

D

|vn|
2dx→

∫

D

|v|2dx > 0.

Moreover, there exists ε0 > 0 such that V (x) ≥ ε0, W (x) ≥ ε0 for any x ∈ D.
By the choice of {(un, vn)}, we have

Eγn(un, vn)

=
1

2

∫

R3

(

a1|∇un|
2 + a2|∇vn|

2 + γn(V (x)u2n +W (x)v2n)
)

dx

+
1

4

(

b1Υ
2(un) + b2Υ

2(vn)
)

−
2

α+ β

∫

R3

|un|
α|vn|

βdx

=
(1

2
−

1

α+ β

)

∫

R3

(

a1|∇un|
2 + a2|∇vn|

2 + γn(V (x)u2n +W (x)v2n)
)

dx

+
(1

4
−

1

α+ β

)(

b1Υ
2(un) + b2Υ

2(vn)
)

≥
(1

2
−

1

α+ β

)

∫

R3

(

γn(V (x)u2n +W (x)v2n)
)

dx

≥
(1

2
−

1

α+ β

)

∫

D

γnε0(u
2
n + v2n)dx→ +∞ as n→ ∞.

This contradiction shows that (u, v)|Ωc = (0, 0).
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Next we show that un → u, vn → v in Lq(R3) for 2 < q < 6. Otherwise, by
concentration-compactness principle of P. L. Lions [11], there exist δ > 0, ̺ > 0,
yn, ỹn ∈ R3 with |yn| → +∞, |ỹn| → +∞ such that

∫

B̺(yn)

|un − u|2dx ≥ δ > 0,

∫

B̺(ỹn)

|vn − v|2dx ≥ δ > 0.

On the other hand, by the choice of {(un, vn)} and the facts that L(B̺(yn) ∩
{x|V (x) ≤M1}) → 0,L(B̺(ỹn) ∩ {x|W (x) ≤M2}) → 0 as n→ ∞, we obtain

Eγn(un, vn)

≥
(1

2
−

1

α+ β

)

∫

B̺(yn)∩{x|V (x)≥M1}

(a1|∇un|
2 + γnV (x)u2n)dx

+
(1

2
−

1

α+ β

)

∫

B̺(ỹn)∩{x|W (x)≥M2}

(a2|∇vn|
2 + γnW (x)v2n)dx

≥
(1

2
−

1

α+ β

)

γn

(

M1

∫

B̺(yn)

|un−u|
2dx−

∫

B̺(yn)∩{x|V (x)≤M1}

|un−u|
2dx

)

+
(1

2
−

1

α+ β

)

γn

(

M2

∫

B̺(ỹn)

|vn−v|
2dx−

∫

B̺(ỹn)∩{x|W (x)≤M2}

|vn−v|
2dx

)

=
(1

2
−

1

α+ β

)

γn

(

M1

∫

B̺(yn)

|un−u|
2dx−on(1)

)

+
(1

2
−

1

α+ β

)

γn

(

M2

∫

B̺(ỹn)

|vn−v|
2dx−on(1)

)

→ +∞, as n→ ∞.

This contradiction implies un → u, vn → v in Lq(R3) for 2 < q < 6.
Since {(un, vn)} is bounded in E, by the Fatou’s lemma, we have that

lim inf
n→∞

∫

R3

|∇un|
2dx ≥

∫

R3

|∇u|2dx,

lim inf
n→∞

∫

R3

|∇vn|
2dx ≥

∫

R3

|∇v|2dx.

On the other hand, by the choice of {(un, vn)}, we obtain
∫

R3

(

a1|∇un|
2 + a2|∇vn|

2 + γn(V (x)u2n +W (x)v2n)
)

dx(3.2)

+ b1Υ
2(un) + b2Υ

2(vn)

= 2

∫

R3

|un|
α|vn|

βdx.

By (3.2) it follows that
∫

R3

(a1|∇u|
2 + a2|∇v|

2)dx+ b1Υ
2(u) + b2Υ

2(v)
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≤ lim
n→∞

[ ∫

R3

(a1|∇un|
2 + a2|∇vn|

2)dx+ b1Υ
2(un) + b2Υ

2(vn)

]

≤2 lim
n→∞

∫

R3

|un|
α|vn|

βdx.(3.3)

Next, we first prove that

(3.4) lim
n→∞

∫

R3

|un|
α|vn|

βdx =

∫

R3

|u|α|v|βdx.

Given ε > 0, we can argue as in the proof of Lemma 2.3 to conclude that, for
some ρ > 0 large, there holds

lim sup
n→∞

∫

Bc
ρ(0)

|un|
α|vn|

βdx ≤ ε.

By taking ρ larger if necessary, we may assume that
∫

Bc
ρ(0)

|u|α|v|βdx ≤ ε.

Moreover, the local convergence in (3.1) and the Lebesgue dominated conver-
gence theorem imply that

∫

Bρ(0)

|un|
α|vn|

βdx→

∫

Bρ(0)

|u|α|v|βdx as n→ ∞.

Since
∣

∣

∣

∣

∫

R3

(|un|
α|vn|

β − |u|α|v|β)dx

∣

∣

∣

∣

≤

∫

Bc
ρ(0)

|un|
α|vn|

βdx+

∫

Bc
ρ(0)

|u|α|v|βdx+

∣

∣

∣

∣

∫

Bρ(0)

(|un|
α|vn|

β − |u|α|v|β)dx

∣

∣

∣

∣

,

it follows from the above estimates and convergences that

lim sup
n→∞

∫

R3

(|un|
α|vn|

β − |u|α|v|β)dx ≤ 2ε,

and therefore (3.4) holds. Then by (3.3) and (3.4) we have
∫

R3

(a1|∇u|
2 + a2|∇v|

2)dx + b1Υ
2(u) + b2Υ

2(v) ≤ 2

∫

R3

|u|α|v|βdx.

As a consequence of (u, v)|Ωc = (0, 0) we obtain
∫

Ω

(a1|∇u|
2 + a2|∇v|

2)dx+ b1

(

∫

Ω

|∇u|2dx
)2

+ b2

(

∫

Ω

|∇v|2dx
)2

≤ 2

∫

Ω

|u|α|v|βdx.

Thus there exists t0 ∈ (0, 1] such that t0(u, v) ∈ M and

E∞(t0(u, v)) ≤ E∞(u, v),

hence c∞ ≤ E∞(t0(u, v)) ≤ E∞(u, v) ≤ lim
n→∞

Eγn(un, vn) = k < c∞, which is a

contradiction. �
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Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. For any sequence γn → +∞, let (un, vn) := (uγn , vγn)
be the solutions of (KS)γn obtained in Theorem 1.1, that is γn → +∞ such
that (un, vn) ∈ Nγn , Eγn(un, vn) = cγn and E ′

γn
(un, vn) = 0. By Lemma

2.2(i) we know that {(un, vn)} must be bounded in H1(R3)×H1(R3), we may
assume that (un, vn) ⇀ (u, v) in H1(R3) × H1(R3) and (un, vn) → (u, v) in
Ls1loc(R

3) × Ls2loc(R
3) for 2 ≤ s1, s2 < 6. We shall show that (u, v) ∈ H1

0 (Ω) ×
H1

0 (Ω) is a ground state solution of (KS)∞, that is E∞(u, v) = c∞, (un, vn) →
(u, v) in H1(R3) × H1(R3). As in the proof of Lemma 3.2 we can prove that
(u, v)|Ωc = (0, 0) whereas (u, v) ∈ H1

0 (Ω) × H1
0 (Ω) and (un, vn) → (u, v) in

Ls1(R3)× Ls2(R3) for 2 ≤ s1, s2 < 6. Then it suffices to show that

lim
n→∞

∫

R3

|∇un|
2dx =

∫

R3

|∇u|2dx, lim
n→∞

∫

R3

|∇vn|
2dx =

∫

R3

|∇v|2dx,

lim
n→∞

γn

∫

R3

V (x)u2ndx = 0, lim
n→∞

γn

∫

R3

W (x)v2ndx = 0.

In fact, if one of the above limits does not hold, by the Fatou’s lemma, we have
∫

R3

(a1|∇u|
2 + a2|∇v|

2)dx + b1Υ
2(u) + b2Υ

2(v) < 2

∫

R3

|u|α|v|βdx,

similar to the proof of Lemma 3.2, there exists t0 ∈ (0, 1) such that t0(u, v) ∈ M
and

c∞ ≤ E∞(t0(u, v)) < E∞(u, v) ≤ lim
n→∞

Eγn(un, vn) ≤ c∞,

which is a contradiction. This completes the proof of Theorem 1.2. �
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