• 제목/요약/키워드: computation intensive task

검색결과 12건 처리시간 0.018초

다중 명령어 처리 DSP 설계 (A Design of Superscalar Digital Signal Processor)

  • 박성욱
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.323-328
    • /
    • 2008
  • 본 논문에서는 연산 중심의 DSP 작업에 대한 성능을 유지하면서 제어 작업을 효과적으로 수행할 수 있는 프로세서 구조를 제안하고 구현하였다. 전통적으로 DSP작업은 직렬 연결된 연산기로 구현되지만, 제안한 프로세서에서는 곱셈기, 2개의 ALU, 읽기/쓰기 유닛 등 4개의 실행 유닛이 병렬로 배치되어 있고 수퍼스칼라 방식으로 제어되므로 동시에 처리된다. 제안된 프로세서를 사용하여 AC-3 오디오 복호화기를 구현하여 성능이 37.8% 향상됨을 확인하였다. 이와 같은 연구는 기존의 고성능 DSP를 사용할 수 없는 저가격의 가전기기용 부품제작에 활용이 가능하다.

Optimizing Energy-Latency Tradeoff for Computation Offloading in SDIN-Enabled MEC-based IIoT

  • Zhang, Xinchang;Xia, Changsen;Ma, Tinghuai;Zhang, Lejun;Jin, Zilong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.4081-4098
    • /
    • 2022
  • With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.

Cost-Aware Scheduling of Computation-Intensive Tasks on Multi-Core Server

  • Ding, Youwei;Liu, Liang;Hu, Kongfa;Dai, Caiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5465-5480
    • /
    • 2018
  • Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud computing. Multi-core processors are widely used in mobile devices, personal computers, and servers. Existing energy efficient task scheduling methods chiefly focus on reducing the energy consumption of the processor itself, and assume that the cores of the processor are controlled independently. However, the cores of some processors in the market are divided into several voltage islands, in each of which the cores must operate on the same status, and the cost of the server includes not only energy cost of the processor but also the energy of other components of the server and the cost of user waiting time. In this paper, we propose a cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. Tasks are first allocated to cores, and optimal frequency of each core is computed, and the frequency of each voltage island is finally determined. The experiments' results show the cost of ICAS is much lower than the existing method.

Efficient Task Offloading Decision Based on Task Size Prediction Model and Genetic Algorithm

  • Quan T. Ngo;Dat Van Anh Duong;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.16-26
    • /
    • 2024
  • Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods often neglect the critical consideration of future task requirements when making offloading decisions. In this paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability enables more informed offloading decisions that account for upcoming computational demands. We employ genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By considering future task requirements, our approach achieves more efficient resource utilization. We validate our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems.

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

An Efficient Algorithm for Mining Frequent Sequences In Spatiotemporal Data

  • ;지정희;류근호
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.61-66
    • /
    • 2005
  • Spatiotemporal data mining represents the confluence of several fields including spatiotemporal databases, machine loaming, statistics, geographic visualization, and information theory. Exploration of spatial data mining and temporal data mining has received much attention independently in knowledge discovery in databases and data mining research community. In this paper, we introduce an algorithm Max_MOP for discovering moving sequences in mobile environment. Max_MOP mines only maximal frequent moving patterns. We exploit the characteristic of the problem domain, which is the spatiotemporal proximity between activities, to partition the spatiotemporal space. The task of finding moving sequences is to consider all temporally ordered combination of associations, which requires an intensive computation. However, exploiting the spatiotemporal proximity characteristic makes this task more cornputationally feasible. Our proposed technique is applicable to location-based services such as traffic service, tourist service, and location-aware advertising service.

  • PDF

MEC를 활용한 커넥티드 홈의 DRL 기반 태스크 오프로딩 기법 (Task offloading scheme based on the DRL of Connected Home using MEC)

  • 임덕선;손규식
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.61-67
    • /
    • 2023
  • 5G의 도래와 스마트 디바이스의 급격한 증가는 멀티 액세스 엣지 컴퓨팅(MEC)의 중요성을 부각시켰다. 이런 흐름 속에서, 특히 계산 집약적이고 지연시간에 민감한 애플리케이션의 효과적인 처리가 큰 관심을 받고 있다. 본 논문에서는 이러한 도전 과제를 해결하기 위해 확률적인 MEC 환경을 고려한 새로운 태스크 오프로딩 전략을 연구한다. 먼저 동적인 태스크 요청 빈도와 불안정한 무선 채널 상태를 감안하여 차량의 전력 소모와 지연시간을 최소화하는 방안을 제시한다. 그리고 심층 강화학습(DRL) 기반의 오프로딩 기법을 중심으로 연구를 진행하였고, 로컬 연산 및 오프로딩 전송 전력 사이의 최적의 균형을 찾기 위한 방법을 제안한다. Deep Deterministic Policy Gradient (DDPG)와 Deep Q-Network (DQN) 기법을 활용하여 차량의 전력 사용량과 큐잉 지연시간을 분석하였다. 이를 통해 차량 기반의 MEC 환경에서의 최적의 성능 향상 전략을 도출 및 검증하였다.

MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교 (Performance Comparison of Task Partitioning Methods in MEC System)

  • 문성원;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권5호
    • /
    • pp.139-146
    • /
    • 2022
  • 최근 사물 인터넷의 발전과 함께 차량과 IT 기술의 융합되어 자율주행과 같은 고성능의 어플리케이션들이 등장하면서 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 부상하였다. 이런 계산 집약적인 태스크들을 낮은 지연시간 안에 제공하기 위해, 여러 MEC 서버(MECS)들이 협력하여 해당 태스크를 수행할 수 있도록 태스크를 파티셔닝하는 기법들이 많이 제안되고 있다. 태스크 파티셔닝과 관련된 연구들은 모바일 디바이스에서 태스크를 파티셔닝하여 여러 MECS들에게 오프로딩을 하는 기법과 디바이스에서 MECS로 오프로딩한 후 해당 MECS에서 파티셔닝하여 다른 MECS들에게 마이그레이션하는 기법으로 나누어볼 수 있다. 본 논문에서는 오프로딩과 마이그레이션을 이용한 파티셔닝 기법들을 파티셔닝 대상 선정 방법 및 파티셔닝 개수 변화에 따른 서비스 지연시간, 거절률 그리고 차량의 에너지 소비량 측면에서의 성능을 분석하였다. 파티셔닝 개수가 증가할수록 지연시간의 성능은 향상하나, 거절률과 에너지 소모량의 성능은 감소한다.

쿠버네티스에서 ML 워크로드를 위한 분산 인-메모리 캐싱 방법 (Distributed In-Memory Caching Method for ML Workload in Kubernetes)

  • 윤동현;송석일
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.71-79
    • /
    • 2023
  • 이 논문에서는 기계학습 워크로드의 특징을 분석하고 이를 기반으로 기계학습 워크로드의 성능 향상을 위한 분산 인-메모리 캐싱 기법을 제안한다. 기계학습 워크로드의 핵심은 모델 학습이며 모델 학습은 컴퓨팅 집약적 (Computation Intensive)인 작업이다. 쿠버네티스 기반 클라우드 환경에서 컴퓨팅 프레임워크와 스토리지를 분리한 구조에서 기계학습 워크로드를 수행하는 것은 자원을 효과적으로 할당할 수 있지만, 네트워크 통신을 통해 IO가 수행되야 하므로 지연이 발생할 수 있다. 이 논문에서는 이런 환경에서 수행되는 머신러닝 워크로드의 성능을 향상하기 위한 분산 인-메모리 캐싱 기법을 제안한다. 특히, 제안하는 방법은 쿠버네티스 기반의 머신러닝 파이프라인 관리 도구인 쿠브플로우를 고려하여 머신러닝 워크로드에 필요한 데이터를 분산 인-메모리 캐시에 미리 로드하는 새로운 방법을 제안한다.

  • PDF

선형 제약 조건화를 통한 내쉬 협상 해법 기반 효율적 자원 할당 방법 (Efficient Resource Allocation Strategies Based on Nash Bargaining Solution with Linearized Constraints)

  • 최지수;정승현;박형곤
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.463-468
    • /
    • 2016
  • The overall performance of multiuser systems significantly depends on how effectively and fairly manage resources shared by them. The efficient resource management strategies are even more important for multimedia users since multimedia data is delay-sensitive and massive. In this paper, we focus on resource allocation based on a game-theoretic approach, referred to as Nash bargaining solution (NBS), to provide a quality of service (QoS) guarantee for each user. While the NBS has been known as a fair and optimal resource management strategy, it is challenging to find the NBS efficiently due to the computationally-intensive task. In order to reduce the computation requirements for NBS, we propose an approach that requires significantly low complexity even when networks consist of a large number of users and a large amount of resources. The proposed approach linearizes utility functions of each user and formulates the problem of finding NBS as a convex optimization, leading to nearly-optimal solution with significantly reduced computation complexity. Simulation results confirm the effectiveness of the proposed approach.