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Abstract  

Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained 

mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods 

often neglect the critical consideration of future task requirements when making offloading decisions. In this 

paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent 

neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability 

enables more informed offloading decisions that account for upcoming computational demands. We employ 

genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading 

decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By 

considering future task requirements, our approach achieves more efficient resource utilization. We validate 

our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our 

proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems. 

 

Keywords: Task Offloading, Mobile Edge Computing, Predictive Model, Genetic Algorithm. 

 

1. INTRODUCTION 

In the landscape of mobile edge computing, task offloading has gained prominence as a strategic approach 

to enhance system performance and resource utilization [1-3]. Task offloading refers to the practice of 

transferring computational tasks from resource-constrained devices (such as mobile phones or IoT devices) to 

more powerful servers located at the network edge or in the cloud [4-6]. By doing so, we alleviate the burden 

on local devices, improve response times, and optimize energy consumption. 

The proliferation of mobile devices, coupled with the exponential growth in data-intensive applications, 

underscores the importance of efficient task management. Users demand seamless experiences, whether 

streaming high-definition videos, running complex machine learning models, or participating in real-time 

collaborative applications. However, the limited computational capabilities of mobile devices often hinder 
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their ability to handle such workloads effectively. Task offloading offers a compelling solution by enabling 

devices to leverage external resources, such as Unmanned Aerial Vehicles (UAVs), for computation, storage, 

and communication. UAVs offer dynamic deployment, reducing network latency and improving 

responsiveness. Their scalability and extended coverage benefit geographically dispersed scenarios and areas 

with limited edge server infrastructure. 

Despite the benefits of task offloading, existing methods predominantly focus on immediate decisions 

without considering future task requirements. This oversight can lead to suboptimal resource allocation, 

inefficient energy usage, and missed opportunities for performance improvement. In our paper, we address this 

limitation by proposing an innovative approach that leverages predictive models to anticipate future task sizes. 

By incorporating this foresight, we aim to enhance the decision-making process for task offloading, ultimately 

achieving more efficient resource utilization in mobile edge computing systems.  

Our solution combines two key components: predictive task sizing using recurrent neural networks (RNNs) 

and decision optimization through genetic algorithms (GAs). Here’s how it works: 

• Predictive Task Size with RNNs: We propose an RNN model to predict task sizes for future time 

slots. By analyzing historical data and patterns, the RNNs estimate the computational requirements 

of upcoming tasks. These predictions serve as valuable input for our offloading decisions. 

Considering future task sizes allows us to allocate resources more effectively, preventing 

underutilization or overloading of edge servers. 

• Genetic Algorithm (GA) for Decision Optimization: To fine-tune our offloading decisions, we 

employ GAs. These optimization techniques iteratively evolve a population of potential solutions 

to find the best configuration. Our fitness functions consider both current and future time slots. We 

aim to minimize total processing time while reducing energy consumption. GA adaptively adjusts 

the decision parameters based on the predicted task sizes 

We validate our method using a real-world dataset from Google-cluster [7]. This dataset provides diverse 

task profiles, reflecting the complexity and variability of actual workloads. Our experiments demonstrate that 

our proposed approach outperforms baseline methods. By incorporating future task requirements, we achieve 

more efficient resource utilization and improved system performance. In summary, our approach leverages 

predictive modeling and optimization to enhance task offloading decisions in MEC systems. By considering 

the future, we pave the way for more intelligent and effective resource management. 

The rest of this paper is organized as follows Section 2 details the system model and problem formulation, 

Section 3 presents the methodology, Section 4 discusses the experimental results, and Section 5 concludes the 

paper. 

 

2. SYSTEM MODEL AND PROBLEM FORMULATION 

2.1 System Model: 

This paper considers a communication system with a single Unmanned Aerial Vehicle (UAV). The UAV, 

denoted by U, acts as an aerial base station to provide wireless connectivity for ground-based mobile devices 

(MDs). These devices, represented by the set M (M = {1, ..., |M|}), can communicate with the UAV (indicated 

by dashed lines) for data transmission and reception. This architecture is particularly beneficial in areas lacking 

infrastructure, such as remote locations or disaster zones. The system leverages advanced wireless technologies 

like LTE, 5G, and Wi-Fi to establish reliable and adaptable communication channels that can adjust to 
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changing operational demands and environmental conditions. Figure 1 shows the system model for this paper. 

At the beginning of each fixed-time slot, each mobile device m ∈ M has a computing task with task size 

𝐾𝑡
𝑚 to complete, where 𝑡 is the time slot index. The UAV (U) makes offloading decisions at the start of each 

time slot based on available information. 

 

  

Figure 1. The system model 

 

2.2 Communication Model: 

When the MD offloads tasks to UAV. the total task processing time includes several components: 

• Control Signal Transmission and Reception: Time for exchanging control signals related to task 

requests and decisions. 

• Decision-Making Time: The duration spent on making offloading decisions. 

• Task Transmission Time: Time taken to transmit the task data. 

• Propagation Delay: The delay due to signal propagation through the network. 

• Task Execution Time: The actual computation time for task execution. 

• Output Data Transmission Time: The time needed to send the processed output back to the US. 

Since the output data size is typically smaller than the input data, and downlink data rates are higher than 

uplink rates, the post-processing data transfer time is often omitted. Additionally, control signals are assumed 

to use a dedicated channel, and decision-making algorithms run on edge servers, making their contribution 

negligible and thus ignored in this study. 

In this study, we adopt orthogonal frequency division multiple access (OFDMA) [8] as the multiple access 

scheme for uplink communication. In OFDMA, the total available bandwidth is divided into sub-bands, with 

each sub-band assigned to MD. Specifically, the total bandwidth is divided into |M| sub-bands, each of size B 

and each MD is allocated to one of these sub-bands. 

The communication channels between UAV and the MD follow the free-space path loss model. Since UAV 
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operate at high altitudes, line-of-sight channels dominate in UAV communication scenarios. The uplink bitrate, 

denoted as 𝑏𝑖𝑡𝑟𝑎𝑡𝑒𝑚, between MD 𝑚 and UAV can be formulated as follows: 

𝑏𝑖𝑡𝑟𝑎𝑡𝑒𝑚 = 𝐵 × log2(1 +
𝑔0

(𝑑𝑚)2 ×
𝑝

𝜎2)   (1) 

where: 𝜎 is the noise power, 𝑑𝑚 is the distance between MD 𝑚 and UAV 𝑈, 𝑔0 is the power gain 

with the reference distance of 1 meter, 𝑝 the transmission power 

2.3 Computational Model: 

2.3.1 Local Computing:  

When MD 𝑚 executes a task in time slot 𝑡, the task execution time 𝑇𝑙𝑜𝑐𝑎𝑙,𝑡
𝑚  is calculated as: 

𝑇𝑙𝑜𝑐𝑎𝑙,𝑡
𝑚 =

𝐶𝑡
𝑚

𝑅𝑚   (2) 

Where:  

• 𝐶𝑚 is the computational requirement in CPU cycles for task 𝐾𝑡
𝑚. In this work, we assume 𝐶𝑚 is 

in proportion to the task size 𝐾𝑡
𝑚 follow the equation: 𝐶𝑚 = 𝑝𝑑 × 𝐾𝑡

𝑚 

where 𝑝𝑑 (CPU cycles per bit) is the processing density. 

• 𝑅𝑚 represent the computing capacity of the MD 𝑚. 

The energy consumption 𝐸𝑙𝑜𝑐𝑎𝑙,𝑡
𝑚  for completing task 𝐾𝑡

𝑚 locally is calculated as follows: 

𝐸𝑙𝑜𝑐𝑎𝑙,𝑡
𝑚 = 𝛼 × 𝐶𝑡

𝑚  (3) 

where 𝛼 denotes the energy consumed by MD per CPU cycle. 

2.3.2 Edge Computing in UAV: 

When task 𝐾𝑡
𝑚 of MD 𝑚 is offloaded to the UAV 𝑈, the total task processing time 𝑇𝑈𝐴𝑉,𝑡

𝑚  is the total of 

transmission time and the task execution time and is calculated as follows: 

𝑇𝑈𝐴𝑉,𝑡
𝑚 =

𝐾𝑡
𝑚

𝑏𝑖𝑡𝑟𝑎𝑡𝑒𝑚 +
𝐶𝑡

𝑚

𝑅𝑈  (4) 

Where: 𝑅𝑈 represent the computing capacity of the UAV 𝑈 

   The energy consumption 𝐸𝑈𝐴𝑉,𝑡
𝑚  for completing task 𝐾𝑡

𝑚 in UAV 𝑈 is calculated as follows: 

𝐸𝑈𝐴𝑉,𝑡
𝑚 = 𝑃𝑡𝑟𝑎𝑛𝑠 ×

𝐾𝑡
𝑚

𝑏𝑖𝑡𝑟𝑎𝑡𝑒𝑚 + 𝛽 × 𝐶𝑡
𝑚 (5) 

where: 𝑃𝑡𝑟𝑎𝑛𝑠 is the transmission power, 𝛽 is the energy consumed by UAV per CPU cycle 

2.4 Problem Formulation: 

This work focuses on optimizing the total cost associated with processing tasks from MDs. Our objective 

is to minimize the combined time and energy consumption required to complete all the tasks. The main 

problem can be formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑠𝑡 𝐶𝑡 =   ∑ [𝑤 × (𝑇𝑙𝑜𝑐𝑎𝑙,𝑡
𝑚 +  𝑇𝑈𝐴𝑉,𝑡

𝑚 ) + (1 − 𝑤)(𝐸𝑙𝑜𝑐𝑎𝑙,𝑡
𝑚 +  𝐸𝑈𝐴𝑉,𝑡

𝑚 )]
𝑚
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The weight parameter 𝑤 allows us to balance the trade-off between time and energy costs. Adjusting 𝑤 

based on system requirements ensures flexibility in achieving the desired balance. 

 

3. METHODOLOGY 

3.1 Task Size Prediction Model: 

Current offloading decisions in computational systems rely heavily on limited information, like current 

workload, neglecting the dynamic nature of tasks. Task size can vary significantly, leading to unnecessary 

offloading and reduced efficiency. This work proposes predicting future task size and incorporating it into the 

decision process. This allows for reduced unnecessary offloading, improved system efficiency, and enhanced 

energy savings. 

While individual tasks may seem random, the overall workload exhibits patterns over time. We leverage 

historical data to predict future task sizes. In this work, we propose utilizing Long Short-Term Memory 

(LSTM) networks for this prediction task. LSTMs are well-suited for analyzing sequential data like time series, 

making them ideal for capturing the temporal dependencies within MD workloads. By training an LSTM 

model on historical task sizes, we aim to achieve accurate predictions of the next time slot's task size. This 

predicted information will then be incorporated into the offloading decision-making process. 

 

 

Figure 2. The task size prediction model 

 

The architecture of our proposed model for predicting MD task size is illustrated in Figure 2. The model 

leverages two key inputs. Historical Task Size: The last 20 historical task sizes of the current MD simulation 

are fed into a Long Short-Term Memory (LSTM) layer. The LSTM layer is adept at capturing temporal 

dependencies within sequential data, allowing it to learn patterns from the past workload to predict future task 

sizes. MD ID Embedding: The ID of the specific MD simulation is fed into an embedding layer. This layer 

transforms the categorical ID into a dense vector representation, potentially capturing information about the 
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characteristics of different MD simulations that might influence their task size. The outputs from the LSTM 

layer and the embedding layer are then concatenated (combined) before being fed into a final dense layer. This 

dense layer performs a linear transformation to predict the task size of the MD simulation for the next time 

slot. 

3.2 Genetic Algorithm for Task Offloading Decision-making: 

Evolutionary algorithms, particularly genetic algorithms (GAs) [9], are well known for their capability of 

solving complex optimization problems. In this work, a GA is proposed to optimize the offloading decision. 

• Solution Representation: 

We represent solutions as vectors 𝑦 =  (𝑦1, 𝑦2, … , 𝑦|𝑀|), where |M| is the number of MDs. 

Each element 𝑦𝑖 represents the offloading decision for a particular task: 

o 𝑦𝑖 =  0 indicates the task will be processed locally on the MD. 

o 𝑦𝑖 =  1 indicates the task will be offloaded to UAV. 

Key Distinction from Standard GAs: Unlike typical GAs that focus on a single solution, our proposed 

GA generates two solutions for each individual in the population: 

o The first solution (𝑦𝑡) represents the offloading decisions for the current time slot (𝑡). 

o The second solution (𝑦𝑡+1) represents the predicted offloading decisions for the next time slot 

(𝑡 + 1). 

• Fitness Function: The fitness function evaluates the combined system cost for both time slots 

(𝑡 𝑎𝑛𝑑 𝑡 + 1). This cost typically considers factors like execution time and energy consumption. 

A lower system cost translates to a higher fitness score, guiding the GA towards solutions that optimize 

resource utilization. 

The fitness function can be mathematically represented as 𝐹(𝑦𝑡 , 𝑦𝑡+1), where F represents the cost 

calculation for both time slots based on the offloading decisions in 𝑦𝑡  𝑎𝑛𝑑 𝑦𝑡+1. 

• Selection Process: The selection process identifies the top n individuals (solutions) with the highest 

fitness scores from the current population. This selection can be achieved using various techniques 

like roulette wheel selection or tournament selection. 

• Crossover Operation: We employ single-point crossover for generating offspring solutions. During 

crossover, two parent solutions exchange genetic material (offloading decisions for specific tasks) at 

a randomly chosen point within the vector representation. This process creates new offspring solutions 

with potentially improved characteristics. 

• Mutation Operation: To maintain diversity and prevent premature convergence, a single bit (offloading 

decision for a single task) is randomly flipped within each offspring solution with a predetermined 

mutation rate. 

• Replacement Strategy: The offspring solutions generated through crossover and mutation compete 

with the existing population. In this work, the worst individuals in the populations are replaced with 

the best offspring. 
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Please note that, after obtaining the best solutions 𝑦𝑡  and 𝑦𝑡+1 , only the offloading decision 𝑦𝑡  is 

applied to the current time slot 𝑡. The above process is repeated at the beginning of each time slot. 

 

4. EXPERIMENTAL RESULTS 

4.1 Experimental Setup 

In our research, we utilize a dataset sourced from Google Cluster [7]. This dataset contains crucial 

information about various tasks, including their arrival times, data sizes, processing durations, and associated 

deadlines. Notably, these tasks encompass a wide spectrum, ranging from substantial tasks like big data 

analysis and real-time video processing to smaller-scale tasks such as image processing within virtual reality 

environments. 

To ensure compatibility with our established model, we preprocess the raw data. This involves 

normalization and denormalization techniques tailored to the specific characteristics of the data. By doing so, 

we align the data sizes with our model’s requirements, allowing for more accurate analysis and predictions. 

Drawing insights from relevant literature [10, 11], we establish key parameter settings. These parameters 

play a pivotal role in shaping our model’s performance and overall effectiveness. For a comprehensive 

overview, you can refer to Table 1, where we outline these essential parameter values. 

 

Table 1. Experimental settings 

Parameter Value 

Number for MDs (|𝑀|) 25 

Number of UAVs 1 

Task size group (5 groups) [1-2], [2-3], [3-4], [4-5], [5-6] Mbits 

Processing density (𝑝𝑑) 0.297 gigacycles per Mbits 

MD CPU computing capacity (𝑅𝑚) 2.5 GHz 

UAV CPU computing capacity (𝑅𝑈) 41.8 GHz 

Transmission power (𝑃𝑡𝑟𝑎𝑛𝑠) 2 W 

Bandwidth (𝐵) 20 MHz 

𝑔0 -50 dBm 

𝜎2 -100 dBm 

Energy consumed by MD per CPU cycle (α)  5.625 J per gigacycle 

Energy consumed by UAV per CPU cycle (𝛽) 2.708 J per gigacycle 

Number of evaluation time slots 80 

 

Since the dataset has no location information, we randomly generated MD locations within a 500 meters by 

500 meters area. The UAV hovers at an altitude of 100 meters, directly above the center of the experimental 
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area. 

To assess the effectiveness of our proposed prediction-based Genetic Algorithm (GA), we compare its 

performance with two baseline approaches: 

• Greedy Algorithm: This baseline implements a simple greedy strategy. It first sorts all tasks based 

on their task sizes. Then, it iterates through each task, comparing the cost of processing it locally versus 

offloading it to a UAV. If offloading is cheaper based on estimated costs, the task is marked for 

offloading; otherwise, it is processed locally. 

• Standard GA: This baseline utilizes a standard GA similar to our proposed approach, but with a key 

difference. It focuses solely on optimizing offloading decisions for the current time slot. It does not 

consider predicted task sizes for the next time slot. This allows us to isolate the impact of incorporating 

future predictions into the offloading decision process. 

By comparing our proposed prediction-based GA with these baselines, we can evaluate the benefits of 

including predicted task sizes in the offloading decision-making process. The greedy algorithm provides a 

basic benchmark for cost-aware offloading, while the standard GA serves as a reference point for the 

effectiveness of incorporating future predictions. 

4.2 Task Size Prediction Performance 

In a stable real edge computing scenario, the tasks generated by terminal devices are highly correlated with 

time and have a certain continuity and regularity. Generally, several times history window is used to predict 

the task at 𝑡 +  1 times. In the experiments, we set the history window to 20 and trained one model for all 

task size groups. Figure 3 shows the predicted and actual task size of five random MD from 5 task size groups. 

The prediction model can effectively predict the future task size with a small MSE. 
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Figure 3. The task size prediction model performance 

 

4.3 Impact of Task Size:  

This experiment investigates the relationship between task size and system cost (processing time and 

energy consumption). We collected data from various MD simulations with different task sizes. The results 

are presented in Figure 4. 

 

 

Figure 4. Effect of different task sizes 

 

As expected, the overall energy consumption and processing time increase with increasing task size. This 

aligns with the intuition that larger tasks require more computational resources, leading to higher energy 

expenditure and longer execution times. Figure 4 shows that the proposed model achieves the lowest cost 

across different task sizes. This advantage is from the model's ability to incorporate future task size predictions 

into its offloading decisions. By anticipating the computational demands of upcoming tasks, the GA can 

strategically choose between local processing and offloading to remote resources. 

4.4 Impact of Number of MDs: 

This experiment explores how the number of concurrent MD simulations affects system cost (processing 

time and energy consumption). We evaluated performance with varying numbers of MDs, ranging from 5 to 

25 ([3-4] Mbits task size) simulations running simultaneously. The results are presented in Figure 5. 
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As the number of MDs increases, we anticipate a rise in both total energy consumption and processing time. 

This is because managing multiple simulations simultaneously places a higher burden on computational 

resources. Again, the proposed prediction-based GA demonstrates its effectiveness in handling this growing 

workload. 

 

 

Figure 5. Effect of different number of MDs 

 

5. CONCLUSION 

In this study, we proposed an innovative approach to enhance task offloading in mobile edge computing 

systems. Our contributions address critical limitations in existing methods and pave the way for more efficient 

resource utilization. Our predictive task size method, leveraging recurrent neural networks (RNNs), provides 

foresight into future task requirements. By considering upcoming computational demands, we enable more 

informed offloading decisions. Additionally, our GA-based optimization fine-tunes parameters, aiming to 

minimize energy consumption while improving overall system performance. Experimental validation using 

real-world data underscores the effectiveness of our approach. However, further research is needed to explore 

advanced prediction models and energy-aware strategies. By bridging the gap between immediate decisions 

and future task requirements, our work contributes to the ongoing evolution of MEC systems. 
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