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Abstract 
 

Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud 
computing. Multi-core processors are widely used in mobile devices, personal computers, and 
servers. Existing energy efficient task scheduling methods chiefly focus on reducing the 
energy consumption of the processor itself, and assume that the cores of the processor are 
controlled independently. However, the cores of some processors in the market are divided 
into several voltage islands, in each of which the cores must operate on the same status, and the 
cost of the server includes not only energy cost of the processor but also the energy of other 
components of the server and the cost of user waiting time. In this paper, we propose a 
cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. 
Tasks are first allocated to cores, and optimal frequency of each core is computed, and the 
frequency of each voltage island is finally determined. The experiments’ results show the cost 
of ICAS is much lower than the existing method. 
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1. Introduction 

Cloud computing is now becoming the prominent new paradigm in distributed systems. It 
takes advantage of the economies of scale, and advanced services can be provided to users in a 
pay-as-you-go manner. Cloud is cost effective for users, but it is a challenge for the service 
providers to power the increasing hardware resources, because the cost of energy consumed by 
a server during its lifetime has exceeded the cost of the server itself [1]. The server is the 
physical unit of the cloud platform, and the servers and storage devices consume about 26% of 
the total energy of the data center [2]. The world’s 44 million servers consumed 0.5 percent of 
total electricity in 2008, and it will be quadruple by 2020 if the demand continues [3]. 
However, the utilization of a typical data center is around 20-30% [4], which means a large 
amount of energy will be wasted. Meanwhile, the environment impact is another challenge for 
data centers since the majority of today’s energy is generated from non-renewable fossil fuels 
[5], which produce harmful CO2 emissions. According to the Smart 2020 report [6], data 
centers will be responsible for 18 % CO2 of emission in the world. Hence reducing the energy 
consumption of the servers can greatly profit the services providers, users and the 
environment. 

The servers typically have one or more multi-core processors nowadays. The cores of the 
processor are divided into several voltage islands (or groups), all the cores in the same island 
operate on the same frequency, while the operating frequencies of the core in different islands 
are independent. Energy is consumed when processing tasks on multi-core server, and the 
users should wait for the results of the tasks. In cloud computing, users rent the resources (or 
server) in a pay as you go manner to run their jobs. If the energy consumption of the rented 
server is high, the profit of the service provider becomes less. And if the processing time of the 
job is too long, the probability that the user gives up using the service grows greater. Hence 
both the energy consumption and the waiting time of the user should be taken into 
consideration when processing jobs on multi-core server, especially in cloud computing 
environment. 

Most existing methods only focus on the energy consumed by processor, however the 
energy consumed by the other components cannot be ignored when we improve the energy 
efficiency of the multi-core server. And the existing research aim to improve either the energy 
efficiency or performance, these methods can reduce the economic cost or improve the quality 
of service for the users. But both the energy cost and the time cost should be reduced 
simultaneously for the service provider to gain higher profit. A cost-aware scheduling method 
was proposed in [7], but it only suits for the processor in which each core operates on 
independent frequency. 

In this paper, we define the cost of processing a computation-intensive task on the 
multi-core server in which the cores of the processor are divided into several voltage islands, 
and propose a cost-aware scheduling algorithm ICAS for the multi-core server to reduce the 
cost when processing computation-intensive tasks. In ICAS, the processor is fully used and the 
workload of each core is as balanced as possible to reduce the energy waste and waiting time. 
The scheduling is divided into three steps, allocating tasks to cores, computing the optimal 
frequency of each core, and determining the frequency of each voltage island. The 
experiments’ results show the cost of ICAS is much lower than the existing method. 

The rest of the paper is organized as follows. We overview the related works in section 2, 
and introduce the preliminaries of the issue in section 3. In section 4, we introduce how to 
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schedule the tasks on a single core server. And we describe the details of the proposed 
algorithm in section 5, and show the experiments’ results in section 6. We conclude our work 
in section 7. 

2. Related Work 
Multi-core processors have been widely used in servers, PCs and mobile phones. Many 
researches aim to reduce the power of the multi-core processor, and improve the energy 
efficiency of processing tasks on multi-core processors. DVFS, which changes the operating 
frequency of the cores, and DPM (Dynamic Power Management), which chooses proper cores 
to run the tasks, are two common techniques to reduce the energy consumption of the 
multi-core processor.  

Liu et al proposed an energy-aware method EA-DVFS to select the voltage and the 
frequency of the processor in embedded systems in [8]. It changes the status of the processor 
according to the remainder energy, the processor operates on max frequency if there are 
enough energy, otherwise, lower frequency will be used to save energy. A variable-aware 
DVFS method was proposed in [9], in which the status of the processor was changed 
according to the variables of voltage, temperature, process parameter and so on, rather than 
using frequency threshold and greedy policy. In [10] the models were made for both 
homogeneous and heterogenous processors, the authors tried to reduce the dynamic power of 
the processor, and compared the dynamic energy consumption for processing tasks on the two 
kinds of processors. To find the optimal frequency of each core when processing tasks, 
decision tree was adopted in [11] to minimize the energy consumption of each user instruction. 
However, only the energy of the multi-core processor is considered rather than the energy 
consumption of the whole server in these methods. 

The energy efficient scheduling methods based on DVFS only consider the dynamic power 
of the processor, which is proportional to the square of the operating frequency. Energy 
efficient scheduling of multiple tasks on multi-core processor was proved to be an NP problem 
in [12]. This issue can be deduced to number partition problem, which is the simplest NP 
problem. But the solution of number partition cannot work well when there are more than two 
partitions [13]. The scheduling can also be deduced to other classic NP problems such as bin 
packing, integer linear programming and so on.  

With the development of the nanofabrication technology of the processor, the static power 
is becoming more and more important in the total power, and only reducing the dynamic 
power cannot decrease the power of the processor in some cases. Hence more and more 
researches integrated DVFS and DPM techniques to schedule the tasks energy efficiently on 
multi-core servers. However, these researches assumed that the cores are controlled 
independently, i.e. the cores can operate on different frequencies. This cannot suit for majority 
of processors on the market, because the cores of the most multi-core processors are divided 
into several voltage islands, and the cores in the same island must operate on the same 
frequency. 

Kong et al scheduled the real-time tasks on the multi-core processor with multiple islands 
in [14]. The optimal frequency of the island was determined by the number of cores and the 
static power when processing tasks without deadline. A method with polynomial complexity 
was proposed to compute the minimal energy for processing tasks with deadline constraint. 
The method first computed the number of islands to run tasks, assigned the tasks to each core, 
and find the optimal frequency of each island. SFA (Single Frequency Approximation) was 
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used in [15], all the cores of each island operate on the same frequency when processing tasks. 
A dynamic programming method was adopted to allocate the tasks and set the frequencies, 
according to the approximation factor of energy consumption in SFA. The energy efficiency 
of SFA was analyzed in [16], it is found that the energy efficiency of SFA decreases when 
there were more cores in a voltage island. Another conclusion was that SFA is very practical 
and can be integrated with other dynamic power management techniques to improve the 
energy efficiency, though the schedule was not always the optimal solution. The most 
workload first was proposed in [17], and tasks were first allocated to islands with most 
workload to improve the resource utilization of the islands and then reduce the energy 
consumption. And the method was theoretically analyzed, and the approximation ratio was 
given.  

As to the server with multi-core processor, the energy model for scheduling the tasks is 
more complex. Three measurements were defined for selecting energy efficient schedules of 
the tasks processing on multi-core server in [18]. The measurements were determined by the 
idle and peak power of the server and the parallelism of the tasks. A power and energy 
container was designed in the level of operating system in [19] to compute and control the 
power and energy usage of each fine-grained request. Tseng et al tested the energy of a server 
in [20], and found that scheduling the multi-thread programs properly can reduce the power 
cost and energy consumption of the server. These researches developed some methods to 
reduce the energy or improve the energy efficiency of the server, and the cores of the server are 
assumed to be controlled independently. 

There are still some work take both energy consumption and performance into 
consideration. A GE scheduling algorithm was proposed in [21] to tradeoff the energy 
consumption of the server and QoS of the applications. The core speed was transformed to 
compensate the service quality in GE. Workload dependent dynamic power management was 
proposed in [22] to reduce the energy and improve the performance of the server. However, 
these methods are not practical for the service providers of cloud computing to manage the 
server resources, because the service is provided in a “pay as you go” manner. Thus the 
scheduling solutions must be cost aware when processing tasks on the multi-core server. 

A cost aware scheduling algorithm was proposed in [7], the cost of the server for 
processing a task contains the energy cost and temporal cost. Two task execution modes, the 
batch mode and the online mode, are considered, and heuristics are developed. This work is 
similar to our paper, but an assumption was made in this wok that all the cores of the server can 
be controlled independently. Hence, the method is not suit for situation in this paper that the 
cores are divided into several voltage islands. 

3. Preliminaries 
A physical node PM consists of processor, disk, memory, mainboard and other components, 
and the processor is DVFS supported. It is supposed that the power of the processor, Pcpu, 
varies with its operating frequency while that of the other components, Ps, remains constant 
when PM process computation-intensive tasks. We also suppose that only one processor is 
equipped on PM, and no overhead of power and time will be cost when the processor changes 

its operating frequency. Then the energy consumed by PM is ( )( )et

cpu sst
E P t P dt= +∫ , where st 

and et are the start and end time for processing the task, and Pcpu(t) is the power of the 
processor at time t.  
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The power of the processor Pcpu includes dynamic power Pd and static power (or leakage 
power) Pl. The dynamic power can be formed as h

dP fα= ⋅ , where α  and h are constants and 
h=3 for simplicity. It is assumed that static power is independent of the operating frequency in 
most cases. Suppose 

max,l d fP Pβ= ⋅  and max,s d fP Pγ= ⋅ , where max,d fP  is the maximum dynamic 
power, β  and γ  are constants. Then we get the energy consumption of PM is  

( )( )
max,

et h
d f st

E P f t dtβ γ= ⋅ + +∫     (1) 

A computation-intensive task ( ), ,i i i iJ r d e= , where ri and di are the release time and 
deadline of the task, and ei is the worst case execution time (WCET) which is the execution 
time for the processor operating on maximum frequency fmax to complete Ji. We normalize the 
maximum frequency fmax=1, then the execution time of Ji with frequency f is ,iJ f it f e= ⋅  and 
the energy consumption of the node is  

 ( ) ( )
max max

1 2
, , , , ,iJ f s l d f i f d f i d f iE P P P t P f e f P eβ γ −= + + ⋅ = + ⋅ ⋅ ⋅ + ⋅ ⋅   (2) 

The cost of a node for processing the task includes temporal cost Ct and energy cost Ce, i.e. 
Cost=Costt+Coste. Temporal cost is the amount of money paid to compensate a user for 
waiting for his/her task to be completed, t tCost R t= ⋅ , where Rt is the temporal factor and t is 
the execution time of the task. Energy cost represents the money paid for the energy 
consumption for processing the task, e eCost R E= ⋅ , where Re is energy factor which can be 
derived from the electricity price, E is the energy consumption of the server. 

Tasks may arrive together without deadline constraint, which is called batch mode, or arrive 
unpredictable and each task has an explicit deadline constraint, which is called online mode. In 
this paper we focus on scheduling the tasks in batch mode on a server whose cores are 
consisting of multiple voltage islands, which are also called groups or clusters, so that the total 
cost for processing the tasks is minimal. To solve this problem, we first schedule batch tasks 
on a single core server. 

4. Cost-Aware Scheduling on Single Core Server 

In the batch mode, a set of tasks { }1 2, , , nJ J J J=   without deadline constraints arrive 
simultaneously and can be processed in arbitrary order. If the tasks are sequentially processed 
and the processor has single core, the cost of the node for processing task Ji is 

, , 1i i i i

i
J t J e J t j e Jj

Cost Cost Cost R t R E
=

= + = ⋅ + ⋅∑     (3) 

where , ,,
i it J e JCost Cost  are the temporal cost and energy cost of the node for processing Ji, ti is 

the time duration between the start and end of the execution of Ji, iJE  is the energy 

consumption for processing Ji. Then the time for waiting for Ji to be completed is 1

i
jj

t
=∑ . 

It can be seen that the temporal cost for each task is caused by the execution of itself and the 
tasks processed ever before. And the total cost of the tasks in J is 

 
( )

, , 1

1

i i i
i i i

i
i i

i
t J e J t j e Jj

J J J J J J

t i e J
J J J J

Cost Cost Cost R t R E

R n i t R E

=
∈ ∈ ∈

∈ ∈

= + = ⋅ + ⋅

= ⋅ − + ⋅ + ⋅

∑ ∑∑ ∑

∑ ∑
   (4) 

where Rt and Re are the temporal and energy factors, n is the number of tasks, and i is the 
execution order of task Ji. 
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In other words, the temporal cost for Ji can also be viewed as the sum of the temporal cost 
for itself and the left tasks caused by the execution of Ji. Then the cost for processing Ji will be 

 
( )
( ) ( )

max max

2
, ,

1

1
i iJ t i e J

t i e d f i e d f i

Cost n i R t R E

n i R e f R P e f R f P eβ γ

= − + ⋅ ⋅ + ⋅

= − + ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅
  (5) 

where ei is the WCET of Ji, and f is the operating frequency of the processor for processing Ji. 
To minimize the total cost, we should consider the following two issues, how to determine 

the execution order of the tasks and how to choose optimal frequency for the server to process 
each task. It is shown in Eq.(5) that the tasks executed earlier may lead to more temporal cost, 
because the execution time of the task affect the temporal cost of the succedent tasks. 

Theorem 1. Executing the batch tasks according to their WCET in non-decreasing order 
can minimize the cost of the single core server, if the server operates on the same frequency. 

Proof. Since the server operates on the same frequency, the energy cost of each task will not 
change in different execution order. Given the set of tasks { }1 2, , , nJ J J J=   in the batch mode, 
and the WCET of the tasks 1 2 ne e e≤ ≤ ≤ . The temporal cost is CT1 when the tasks are 
sequentially executed. If the tasks Ji and Jj (1≤i<j≤n) are swapped, the temporal cost for the 
tasks is CT2. Then we have        

  
( ) ( ) ( ) ( )

( ) ( )
2 1 1 1t j i t j i

t j i

CT CT n i R e e f n j R e e f

R j i e e f

− = − + ⋅ ⋅ − − − + ⋅ ⋅ −

= ⋅ − ⋅ −
  (6) 

It is obvious that CT2≥CT1, as j>i and ej≥ei. Therefore, executing the batch tasks according 
to their WCET in non-decreasing order leads to minimal cost. 

It can also be seen that the only variable in Eq.(5) is fi when the execution of task Ji is given. 
Then the derivation of 

iJCost  is computed and set to be 0, we can get the theoretical 
frequency f* to minimize the cost 

 
( )

max

3

,

1
*

2 2
t

e d f

n i R
f

R P
β γ− + ⋅ +

= +
⋅

    (7) 

Since the operating frequencies of each island are discrete, that is the processor cannot 
operate on theoretical frequency in most cases. The processor should operate on the optimal 
frequency, which is also called practical frequency, when processing task Ji to minimize the 
cost. Thus we have 

 

( ) ( )

max max

min min

1 1

, *
, *

*, *
arg min{ , }, *

opt

i

i i i i

f f f
f f f

f
f f F

Cost f Cost f f f f+ +

>
 <=  ∈
 < <

   (8) 

where Cost(fi) and Cost(fi+1) are the cost of the server for processing task Ji when operating on 
frequencies fi and fi+1 respectively. It can be seen that the optimal frequency for processing task 
Ji only depends on the execution order of the task. If the task Ji is executed before Jj (i<j), we 
have i jf f′ ′≥  according to Eq.(7) and Eq.(8). 

Therefore, cost-aware processing of batch tasks on single core server should be divided into 
two steps. The tasks should be firstly sorted according to their WCET in non-decreasing order. 
Then the server operates on optimal frequency of each task computed by Eq.(7) and Eq.(8) to 
execute the corresponding task to minimize the cost. 
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5. Cost-Aware Scheduling on Multi-Core Server 
On the multi-core server, the processor consists of m homogeneous cores, and the set of 

operating frequencies of the processor is F={f1, f2, ..., fns}, where ns is the number of 
frequencies the processor can operate on. We assume f1< f2< ...< fns without loss of generality, 
then the minimum frequency fmin=f1 and the maximum frequency fmax=fns. The power of the 
processor is ( ), ,1

m
cpu i d i li

P P P
=

= +∑ , where Pi,d and Pi,l are the dynamic power and static power 

of each core Ci (1≤i≤m), and ,i l lP P m= , ( ), ,i d d fP f P m= , ( ),i dP f  is the dynamic power of 
Ci when it operates on frequency f. 

We also assume that task cannot be processed on more than one cores at the same time, but 
it can be migrated from one core to another. If all the cores are idle, the processor and the node 
will be transmitted into low power state, and the power of the node is 0. Otherwise, the 
processor and the node are active.  

The cores of the processor are divided into some groups (also called voltage islands). The 
cores in a voltage island operate on the same frequency, while the voltage islands operate on 
various frequencies. In other words, the unit of the cores for changing operating status is the 
voltage island. Each voltage island typically includes the same number of cores. Therefore, the 
power of the node will be 

( ) ( )( )( ) ( ) ( )( ), ,, , , ,
1 1

i i i i j i i j

M M

s M d M M l s C d M C l
i i

mP P x i P f P P x i P f P
M= =

 = + ⋅ + = + ⋅ ⋅ + 
 

∑ ∑  

where m and M are the number of the cores and the voltage islands, each voltage island 
contains m/M cores, Mi is the i-th group of the processor, Ci,j is the j-th core in Mi, iMf  is the 

operating frequency of the cores in Mi, ( ),i iM d MP f  and ,iM lP  are the dynamic and static power 

of Mi, ( ),ij iC d MP f  and ,ijC lP  are the dynamic and static power of core Ci,j. If Mi is active, x(i)=1, 
otherwise, x(i)=0. 

Since all the cores in a voltage island Mi operate on the same frequency, then the optimal 
frequency of the island will be { }

,
,max

i
i j i

opt
M i jC M

f f
∈

= , where ,
opt

i jf  is the optimal frequency of the 
core Ci,j on island Mi. The workload Wi,j of each core Ci,j is the sum of WCET of the tasks on 

Ci,j, i.e 
,

,
s i j

i j s
J Q

W e
∈

= ∑ , where Qi,j is the set of tasks allocated on Ci,j. The workload Wi of each 

voltage island Mi will be { }
,

,max
i j i

i i jC M
W W

∈
= . When a task Ja is assigned to the core Ci,j on island 

Mi, the increamental workload of Mi is  
,

,

0 ,
,

a i j i
i

a i j i

e W W
W

e W W otherwise
+ ≤∆ =  + −

    (9) 

where ea is the WCET of task Ja. Hence, the workload of Mi will be i i iW W W′ = + ∆ , after 
assigning task Ja is assigned to core Ci,j on Mi. 

Though the operating frequency of each voltage island can be transformed, three issues 
should be taken into consideration for processing the tasks energy efficiently. ① Which 
islands are used to process the tasks? ② How to determine the execution order of the tasks on 
each core. ③ How to determine the frequency of each selected island. 

Once the tasks are allocated to each core, the execution order of the tasks and operating 
frequency of each core can be determined according to Theorem 1 and Eq.(8). Therefore, the 
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key issue is tasks allocation on multi-core server to minimize the cost of the server. The 
resource of cores in each voltage islands should be fully utilized to reduce the energy wastes, 
and more islands will be used to balance the workload of the cores to reduce the waiting time 
of the tasks. 

 

Fig. 1.  Two tasks processed on a server 

 

Fig. 2. Three tasks processed on a server 
 

Example Given a server PM whose maximum dynamic power, static power and power of 
other components are max,d f l sP P P= = . The processor of PM has two voltage islands M1 and M2, 
each of them has two cores C1,1 and C1,2, and C2,1 and C2,2 respectively. Two sets of tasks J={J1, 
J2}, J’={J1, J2, J3} are needed to be processed, and WCET of the tasks are 1 2 3e e e e= = = . 

When the set of tasks J is processed, two schedules can be made as shown in Fig. 1. In Fig. 
1 a), tasks J1 and J2 are executed on core C1,1 and C1,2 respectively, and cores C2,1 and C2,2 are 
idle. The cost of the server and the theoretical frequency of core C1,1 and C1,2 will be 

( )
max

3
,

12
2a t e d f

e eCost R R f P
f f

β γ
 

= ⋅ ⋅ + ⋅ + + ⋅ ⋅ 
 

，   
max

3

,

* 1t

e d f

R
f

R P
= +

⋅ ， then the optimal 

frequency of island M1 is maxf f′ = , and the optimal cost of PM is 

max,min ,2 2a t d f eCost R e P R e= ⋅ ⋅ + ⋅ ⋅ ⋅ . 
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If tasks J1 and J2 are executed on core C1,1 and C2,1 respectively, as shown in Fig. 1 b), the 

cost of PM is ( )
max

3
,2a t e d f

e eCost R R f P
f f

β γ′ = ⋅ ⋅ + ⋅ + + ⋅ ⋅ . And the optimal frequency of islands 

M1 and M2 is fmax, and the optimal cost of is max,min ,2 3a t d f eCost R e P R e′ = ⋅ ⋅ + ⋅ ⋅ ⋅ . Obviously, we 
have ,min ,mina aCost Cost′< , that is, fully utilization of the computation resource in an island leads 
to less energy. 

When the set of tasks J’={J1, J2, J3}, the tasks can be scheduled as shown in Fig. 2. If tasks 
J1 and J2 are executed on C1,1, and J3 is executed on C1,2, the cost and theoretical frequency are 

( ) ( )
max max

3 3
1 , 2 ,

1 1 2 2

1 13
2 2b t e d f t e d f

e e e eCost R R f P R R f P
f f f f

β γ β γ   = ⋅ ⋅ + ⋅ + + ⋅ ⋅ + ⋅ + ⋅ + + ⋅ ⋅   
   

, and 

max

31
,

2
* 1t

e d f

R
f

R P
⋅

= +
⋅ ， 

max

32
,

* 1
2

t

e d f

R
f

R P
= +

⋅ ⋅ . Then the optimal frequency of two islands are 

fmax, and the optimal cost is max,min ,4 3b t d f eCost R e P R e= ⋅ ⋅ + ⋅ ⋅ ⋅ . 

In schedule 2 in Fig. 2 b), the cost is ( )
max

3
,3b t e d f

e eCost R R f P
f f

β γ′ = ⋅ ⋅ + ⋅ + + ⋅ ⋅ . Hence the 

optimal frequency and cost are fmax and max,min ,2 3b t d f eCost R e P R e′ = ⋅ ⋅ + ⋅ ⋅ ⋅  respectively. We can 
see that ,min ,minb bCost Cost′< , in other words, fully utilization of idle islands may lead to less 
cost. 

 
Algorithm 1 ICAS (Voltage Island DVFS-based Cost-Aware Scheduling of Tasks) 
Input: max, , , , ,d fP m Mβ γ , { }1 2, , , nsF f f f=   and { }1 2, , , nJ J J J=   

Output: Schedule and Cost  

1： Schedule =∅ , Qj =∅ , Cost = 0; //Initialization 
2： Sort tasks with decreasing e; //sorting tasks 
3： For i=1 to min{n,m} do  //task allocation for light workload 
4：     g = (i-1)/M +1; 
5：     q = i mod M; 
6：     Qg,q.Insert(Ji); 
7：     Schedule.Insert(Ji,Cg,q); 
8： End For 
9： For i= m+1 to n do  // task allocation for heavy workload 
10：   Find the island Mj with least workload Wj; 
11：   Ji is assigned to Cj,q on island Mj with least workload Wj,q; 
12：   Qj,q.Insert(Ji); 
13：   Schedule.Insert(Ji, Cj,q); 
14： End For  //computing optimal frequency 
15： Sort the tasks of each active core with non-decreasing WCET; //sorting the 

cores 
16： Compute optimal frequency of each task using Eq.(7) and Eq.(8); 
17： Compute optimal frequency of each island; //computing optimal frequency of 

each group 
18： Compute Cost; 
19： Return Schedule and Cost 
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The main idea of task allocation is fully utilization of the computation resources and 
workload balance of the cores. The tasks are allocated as follows: 

(1) If n ≤ m/M, only one voltage island is used to process the tasks, and each task is executed 
by an individual core in the island. 

(2) If m/M ≤n ≤ m, n M m⋅    voltage islands, of which at most one islands is not fully 
utilized, are elected to process the tasks, each task is executed by an individual core in the 
islands. 

(3) If n > m, all the cores of the processor is used to process the tasks. 
The cost-aware algorithm ICAS of scheduling tasks on multicore server is shown in 

Algorithm 1. We first initialize the variables and sort the tasks {J1,J2,···,Jn} according to ei 
(1≤i≤n) in non-decreasing order, then the tasks are allocated to the cores sequentially. Each 
task Ji is assigned to an idle core in a voltage island Mj until all cores of Mj are active or all 
tasks have allocated. This process is repeated on another idle island Mj+1 until all tasks have 
completed or all the cores are active, as shown in steps 3-8. For the remaining tasks, the task 
will first allocated to the island Mj with the least workload and the core Cj,q with the least 
increamental cost on the island, as shown in steps 9-14. Once the tasks have been allocated, we 
should sort the tasks on each active core with non-decreasing WCET, and the frequency of 
each core can be computed according to Eq.(7) and Eq.(8). Then the frequency of each island 
will be obtained, and finally we get the total cost of the server. 

6. Performance Evaluation 
We evaluate our proposed algorithm ICAS by simulated experiments. The default values of 

the variables in the experiments are shown in Table 1. The worst case execution time of the 
tasks are assumed to follow the normal and random distributions respectively. The workload is 
light if the number of tasks is less than 10, while the workload is heavy if there are more than 
50 tasks. The temporal cost, energy cost and total cost of ICAS are compared to that of the 
algorithm CBM proposed in [14] and SFA proposed in [15]. 

Table 1. The default values of the variables 
Variables Meaning Default value 

m the number of cores 8 
M the number of voltage islands 2 

n The nubmer of tasks light workload: 1≤n≤10 
heavy workload: 50≤n≤500 

e WCET of each task 1≤ e ≤20 
Pd,max Maximum dynamic power 50W 

,β γ  factor of static power and other power = =0.5β γ  
Rt ,  Re energy factor and temporal factor Rt = Re = 1 

F The set of operating frequencies 
1GHz, 1.2GHz, 1.4GHz, 1.6GHz, 
1.8GHz, 2GHz, 2.2GHz, 2.4GHz,  
2.6GHz, 2.8GHz, 3GHz 

 
Fig. 3 and Fig. 4 show the temporal cost and energy cost of ICAS and CBM for processing 

various number of tasks with random distribution. The results of Fig. 3 indicate that the 
temporal cost and energy cost of ICAS are both less than that of CBM. The temporal cost of 
ICAS is linear to the number of tasks when the number of tasks is less than the number of cores 
since each core only processes one task. The energy cost of ICAS increases when processing 
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more tasks, and the energy cost of each island is linear to the number of active cores. Since 
only one island is used to process the tasks in CBM, the energy cost is linear to the number of 
tasks, while the temporal cost is proportional to the square of the number of tasks. 

When the workload is heavy, all the cores are used to process the tasks in ICAS, while only 
one island is used in CBM. The increamental speed of temporal cost is much faster than that of 
energy cost until the temporal cost is a majority of the total cost. Therefore, the difference 
between the total costs of ICAS and CBM becomes larger for processing more tasks. Though 
the number of active cores in ICAS is two times more than that in CBM, the total cost of CBM 
is more than two times of the cost of ICAS, because the temporal cost of a queue of tasks is 
proportional to the square of the number of tasks in the queue. 

 
Fig. 3. Cost of ICAS and CBM for random distribution and light workload 

 
Fig. 4. Cost of ICAS and CBM for random distribution and heavy workload 

 
Fig. 5 and Fig. 6 show the temporal cost, energy cost and total cost of ICAS and CBM for 

processing tasks with normal distribution. It can be seen that the relationship between the costs 
and the number of tasks in normal distribution is the same as that in random distribution. The 
temporal cost and total cost of ICAS for processing 3, 4 and 5 tasks are (31, 40, 50) and (749, 
1014, 1013) respectively, while that of CBM are (48, 64, 90) and (1144, 1397, 1734) 
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respectively in Fig. 5. The temporal cost and energy cost of ICAS for processing 100, 200 and 
300 tasks are (5397, 45213, 124215) and (17571, 80879, 183724), and the percentages of 
temporal cost in total cost are 31%, 56% and 68% respectively, while that of CBM are (17198, 
148413, 410227) and (47073, 237217, 558688) and the percentages of temporal cost in total 
cost are 37%, 63% and 73% respectively in Fig. 6. 

 

 
Fig. 5. Cost of ICAS and CBM for normal distribution and light workload 

 
Fig. 6. Cost of ICAS and CBM for normal distribution and heavy workload 

 
The operating frequency and the task allocation are affected by the number of voltage 

islands of the processor. Fig. 7 and Fig. 8 show the cost of the two algorithms for processing 
tasks in random and normal distributions respectively on the processor with 8 cores divided 
into 4 voltage islands. It is obvious that the temporal cost and energy cost of ICAS in the case 
of 4 islands are much less than that in the case of 2 islands for processing tasks with both 
random distribution and normal distribution. However, the temporal cost of CBM in the case 
of 4 islands is much larger than that in the case of 2 islands, while the energy cost remains 
fixed for processing tasks with both random distribution and normal distribution. It is because 
that all the cores are activated to process the tasks in ICAS, but only one island is active in 
CBM when the number of tasks is more than that of cores. Hence only two cores are activated 
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to process the tasks in the case of 4 islands, while 4 cores are used in the case of 2 islands in 
CBM. For example, the temporal costs of ICAS for processing 10, 50 and 100 tasks with 
random and normal distributions are (114, 1410, 5061) and (118, 1423, 5040) respectively, 
and the energy costs of ICAS are (1824, 6813, 13259) and (1819, 6704, 13264) respectively. 
As to the algorithm CBM, the temporal costs in random and normal distributions are (259, 
4247, 15993) and (424, 8095, 30931), and the energy costs are (3431, 16511, 32958) and 
(3440, 16621, 32801) respectively. 

 
Fig. 7. Cost of ICAS and CBM for random distribution and various islands 

 
Fig. 8. Cost of ICAS and CBM for normal distribution and various islands 

 
Fig. 9 and Fig. 10 show the cost of ICAS and SFA for processing different tasks in random 

and normal distributions respectively on the processor with 8 cores divided into 4 voltage 
islands. The results show that the energy cost of ICAS is approximate to that of SFA, while the 
time cost of ICAS is higher than that of SFA. The main reason is that all cores operate on the 
same low frequency, and the operating frequency of the cores cannot be changed when 
processing tasks in SFA. Hence the waiting time of each task is longer in SFA, and the time 
cost of SFA is linear to the square of the number tasks according to Eq.(4). It is revealed from 
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the results the total cost of ICAS is less than that of SFA, and the difference will be greater 
with the increasing tasks regardless of the distributions. 

 

 

Fig. 9. Cost of ICAS and SFA for light workload 

 

Fig. 10. Cost of ICAS and SFA for heavy workload 

7. Conclusion 
Multi-core server is the basic physical unit of cloud platform, and it consumes more and 

more energy. Since the cloud service is used in a “pay as you go” manner, the service provider 
must take both energy consumption and QoS into consideration to attract more users and 
increase the profits. A cost consisting of energy cost and temporal cost is defined, and a 
cost-aware scheduling algorithm ICAS is prosed to reduce the cost of processing tasks on 
multi-core server using voltage island-based DVFS. We assign the tasks to the cores of the 
server, compute the optimal frequency of each core, and find the practical frequency of each 
island. The experiments’ results show that then cost of ICAS is much less than existing 
methods. 
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