• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.031 seconds

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Analysis of Compression Characteristics of the Steel Plate-Concrete Wall Structures with Openings (개구부가 있는 강판콘크리트 벽체의 압축특성 분석)

  • Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.245-256
    • /
    • 2012
  • The objective of this study is to investigate the effect of the openings on the structural behavior of SC walls. The test parameters were with or without the reinforcing of openings and sleeve thickness. The common failure showed that the crack in the concrete progressed with the plate's local buckling between the shear connectors. The failure of the openings showed that the vertical wall of the sleeve buckled toward the opening inside. The plate buckling load showed a similar value with or without the sleeve of the opening, respectively. However, the maximum compressive strength of the specimen without the opening was higher than that of specimen with the opening.

Hydration and mechanical properties of Blended Cement added Bypass dust (By-pass Dust를 첨가한 혼합 시멘트의 수화 및 기계적 특성)

  • 성진욱;나종윤;김창은;이승헌;이봉한;김수룡;류한웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.33-39
    • /
    • 1999
  • This study was conducted to confirm the effect of bypass dust on the hydration and mechanical properties of the cement pastes and mortar obtained from ordinary Portland cement (OPC), OPC-slag and OPC-fly ash system. The rate of heat evolution is accelerated with the content of By-pass Dust(BD). total heat evolution increased because alkali-chlorides activated the hydration of blended cement. Compressive strength and bound water content show maximum value at 5wt% By-pass Dust(BD) on each curing time in ordinary Portland cement and slag blended cement. Ca(OH)2 content of Ordinary Portland Cement increased as the content of BD and curing time. In blended cement, the formation of Ca(OH)2 is active at early hydration stage. By pozzolanic reaction, the content of Ca(OH)2 is decreased as curing time goes by. According to the BD content stable chlorides complex of Friedel's salt (C3A·CaCl2·10H2O) is created. Due to the hydration activation effect of chlorides and alkali we observed Type II C-S-H, which developed into densest microstructure.

  • PDF

Passing Performance of HPC Between Reirforcing Bar with Maximum Size of Coarse Aggregate (굵은골재의 최대치수에 따른 고성능 콘크리트의 간극통과성)

  • Yoon, Seob;Baik, Dae-Hyun;Kim, Jung-Bin;Park, Chang-Soo;Lee, Seong-Yeun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.129-132
    • /
    • 2006
  • This paper is to investigate passing performance of high performance concrete between reinforcing bar depending on maximum size of coarse aggregates. Increase in maximum size of coarse results in decrease in water demand and sand to aggregate to secure target slump flow. The larger the maximum size of coarse aggregates is, the denser the space between reinforcing bar is, the amount of concrete passed through the reinforcing bar cage shows to decrease. HPC has favorable passing performance, regardless of aggregate size, when only vertical reinforcing bar is arranged. Whereas, when vertical and horizontal reinforcing bar is arranged at the same time, proper space between reinforcing bar is considered larger than 32mm in case of using 20mm coarse aggregate, 38mm in case of using 25mm aggregate. The increase in maximum size of coarse aggregate leads to increase compressive strength slightly. Length change shows to be decreased with the increase in maximum size of coarse aggregate.

  • PDF

Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material

  • Jo, Byung-Wan;Chakraborty, Sumit;Choi, Ji Sun;Jo, Jun Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • With the aim to reduce the atmospheric $CO_2$, utilization of the carbonated lime produced from the aqueous carbonation reaction for the synthesis of a cementitious material would be a promising approach. The present investigation deals with the aqueous carbonation of slaked lime, followed by hydrothermal synthesis of a cementitious material utilizing the carbonated lime, silica fume, and hydrated alumina. In this study, the aqueous carbonation reaction was performed under four different conditions. The TGA, FESEM, and XRD analysis of the carbonated product obtained from the four different reaction conditions was performed to evaluate the efficacy of the reaction conditions used for the production of the carbonated lime. Additionally, the performance of the cementitious material was verified analyzing the physical characteristics, mechanical property and setting time. Based on the results, it is demonstrated that the material produced by the hydrothermal method possesses the cementing ability. Additionally, it is revealed that the mortar prepared using the alternative cementitious material yields $33.8{\pm}1.3MPa$ compressive strength. Finally, a plausible reaction scheme has been proposed to explain the overall performances of the aqueous carbonation as well as the hydrothermal synthesis of the cementitious material.

Time-dependent Behaviors of Concrete Exposed in the 100% Relative Humidity (상대습도 100% 환경에 노출된 콘크리트의 시간 의존적 거동)

  • Min, Kyung-Hwan;Kim, Youl-Hee;Jung, Hyung-Chul;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.693-696
    • /
    • 2008
  • In order to assess time-dependent behaviors of the high-strength concrete that applied in actual FCM bridges with various curing environments, the shrinkages of air-dried, sealed, and moist 100${\times}$100${\times}$400 mm prism specimens were measured. And the compressive creep test of 3 and 28 days aged concrete in the tap water and 10% CaCl$_2$ solutions were carried out, then results were compared with traditional test results of air-dried and sealed specimens. Time-dependent behaviors of the concrete that according to curing circumstances between sealed and moist specimens show remarkable differences not only on the shrinkage but also on the creep. Hence there need some reconsiderations to the traditional creep test manners that predicting the creep and shrink age of actual concrete structures.

  • PDF

Development of Concrete Material Models for Performance-Based Design Code (성능기반 설계기준 작성을 위한 콘크리트 재료모델의 개발)

  • Kim, Jee-Sang;Lee, Kwang-Myung;Choi, Yeon-Wang;Jung, Sang-Hwa;Moon, Jae-Heum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.975-978
    • /
    • 2008
  • To strengthen the technological competitiveness of the construction market in Korea, researches have been performed to replace the prescriptive design codes (PD) to the performance-based ones (PBD). As one of the basic requirements for PBDs, development of the optimized concrete material models for domestic applications have been tried by comparing and verifying the pre-existing models with the observations and quality evaluations of ready mixed concretes that are used in the domestic market. This paper shows the summary of the present state of the research progress in the areas of compressive strength and elastic modulus.

  • PDF

A Study on the Character of Concrete compressive strength according to Bottom-Ash and Internal gap for Crack aspect predictions (Bottom-Ash를 활용한 콘크리트 압축강도와 내부 공극 특성 분석 및 균열양상 예측)

  • Jung, Woo-Young;Sim, Young-Hwan;Lee, Sang-Moon;Choi, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.713-716
    • /
    • 2008
  • In about the concrete application which recycles Ash the research came to be advanced as research in compliance with researchers relation actively in about cement substitutional concrete mixing ratio and burglar quality of existing. The research which it sees as fundamental research the research which it follows in cement substitutional concrete mixing ratio of existing and it researched different Bottom-Ash recycling qualities in about cup aggregate partial substitution Bottom-Ash application.

  • PDF

Behavior of Segmented Composites Using General Mortar under Static and Impact Loading (일반 모르타르를 이용한 분절 복합체의 정하중 및 충격하중 실험)

  • Kim, Youl-Hee;Min, Kyung-Hwan;Lee, Jae-Seong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.33-36
    • /
    • 2008
  • It is generally known that a shell in the form of layered structures stacked up thin elements by organic adhesives has high resistance capacity against static and impact loading. The complex materials such as these diversified layered structures are more reliable and efficient to the impact loading than the single material. In this study, the segmented composites in the shape of a beam were made, using mortar and concrete block and tested under static and impact loading in order to develop the complex materials in the form of layered structures as the segmented composites to resist impact loading. And it compared to the normal concrete beams having the same compressive strength to evaluate the differences in their performance and failure modes.

  • PDF

Study on the Shrinkage Properties of Concrete using Recycled Fine Aggregate (순환골재콘크리트의 수축특성에 관한 연구)

  • Na, Chul-Sung;Lee, Hyoung-Jun;Nam, Jeong-Soo;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.681-684
    • /
    • 2008
  • In case of recycled fine aggregate, density and absorption ratio is lower than natural one, so it is used to lower value added products and it is limited its usage. It is reported that Compressive and tensile strength of recycled concrete is more deteriorate and shrinkage properties is very deteriorate because high absorption of recycled fine aggregate. Accordingly, in this study, it is develop that dry manufacturing system composed specific gravity separator of high-speed rotation impact type, reclaimer of minuteness fine aggregate and evaluate that shrinkage properties of recycled concrete using recycled fine aggregate at producing this system. Hereafter, it is present that fundamental data to practical use recycled fine aggregate.

  • PDF