• Title/Summary/Keyword: compression member

Search Result 223, Processing Time 0.027 seconds

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

Critical Loads of Eccentrically Loaded Struts with Thin-Walled Open Sections (편심하중을 받는 박벽개단면 압축재의 임계하중)

  • 나영진;이수곤
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-140
    • /
    • 1996
  • Single angle or channel with thin-walled open section can be used as compression member for example as web member in truss. In this case the inevitable eccentricity due to fabrication is commonly neglected in structural design. However eccentricity effect should be considered in the member design, especially in case of compression member. The critical loads of compression members that buckle by twisting or by a combination of bending and twisting are to be determined by solving governing differential equations. In this paper, the investigations are limited to the rolled channels([), equal-leg angles(L), lipped channels(C) and the applied loads are assumed to have some eccentricities.

  • PDF

Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight (경량화용 박육부재의 형상비가 압궤특성에 미치는 영향)

  • 정종안;김정호;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

Material Resistance Factors for Reinforced Concrete Flexural and Compression Members (철근콘크리트 휨부재 및 압축부재의 재료조항계수 적용에 관한 연구)

  • 김재홍;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • In the Ultimate Strength Design, the design strength of a member is determined by multiplying the strength reduction factor to the nominal strength. This concept may be a reasonable approach, however it can not consider failure modes appropriately. Moreover, column design strength diagram show an abrupt change at a low level of axial load, which does not seem to be reasonable. This research compares the design strength determined by the strength resistance factors. As the material resistance factors for flexure and compression, 0.65 and 0.90 are proposed for concrete and steel, respectively. The design strength calculation process by applying material resistance factors addresses failure modes more effectively than by applying member strength reduction factor, and provides more resnable design strength for reinforced concrete flexural and compression members.

Bending Characteristic Evaluations Circular Cross-section Carbon Composite and Hybrid Structural Material (원통단면 탄소복합재와 혼성 구조부재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Jeong, Jong-An;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2012
  • Carbon Fiber reinforced composite material can be designed for the optimized performances of structural member that have achieve appropriate mechanical properties with cross-sectional shape, fiber direction, stacking sequence and thickness. So there are needed extensive databases each optimal design of CFRP structural member by impact through the preparation of different shape, interface number, thickness and stacking angle. When pressure is applied to structural member, compression, bending and torsion is shown on the corresponding member. For the effective utilization of fiber reinforced composite material as main structural member, optimized design technology should be established to maximize mechanical properties for compression, bending and torsion. In this paper, CFRP prepreg sheet with different stacking angle is manufactured in CFRP and hybrid(Al+CFRP) with circular cross-section. Strength and stiffness is gotten respectively by flexure test. CFRP structure and hybrid structure can be compared with each other. The best design guideline can be analyzed by use of this study result.

Measuring rescuer's fatigue by evaluating varying sized groups of rescuers performing chest compressions on a manikin study for suspected COVID-19 patients (COVID-19 대응 심정지에서 가슴압박 교대 인원에 따른 구조자의 피로도 -마네킹 연구-)

  • Ahn, Hee-Jeong;Shim, Gyu-Sik;Bang, Sung-Hwan;Song, Hyo-Suk;Han, Seung-Eun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.25 no.3
    • /
    • pp.81-92
    • /
    • 2021
  • Purpose: The aim of the study is to measure the quality of cardiopulmonary resuscitation (CPR) and the fatigue of rescuers wearing PPE (Level D) during a CPR session and to ultimately provide suggestions of safety standards for rescuers. Methods: 36 subjects were enrolled in the study. The subjects were divided randomly into three groups of two-members, three-members, and four-members. Each group performed CPR for 30 minutes. Blood lactate concentration, heart rate, rating of perceived exertion, chest compression depth and rate were measured before experiment and after each cycle. Results: There was a difference in the blood lactate concentration during CPR cycle by member of shifts (p=.014). The blood lactate concentration increased during CPR (p=.000). Subjective fatigue was a significant difference of chest compression in cycles 3, 4, and 5 for the member of shifts during CPR (p=.049, p=.009, p=.015). Depth and rate of chest compression were not different for the member of shifts during CPR. Conclusion: It is necessary to establish standards for the member of shifts during CPR, to reduce the fatigue of rescuers.

The Elastic Critical Loads of Linearly Non-symmetrically Tapered Members (직선형으로 Taper진 비대칭 변단면 부재의 탄성임계하중)

  • 김효중;홍종국;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.299-306
    • /
    • 2000
  • The elastic critical load of a slender compression member plays an important role when the proper design of that member is required. For tapered compression members, however, there are cases when the conventional neutral equilibrium or energy method can't be applied to the determination of critical loads. In this paper, the finite element method is applied to the approximate determination of the linearly tapered members. In this paper, the bars are assumed to be tapered linearly along their axes. The parameters considered in this study are taper parameter, α and the sectional property parameter, m. The member ends are either hinged or fixed. The computed results using the finite element method are represented in the forms of algebraic equations. The regression technique is employed to determine the coefficients of the algebraic equations. Critical loads estimated by the proposed algebraic equations coincide flirty well with those employing the finite element method.

  • PDF

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

An Experimental Study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors II - Effect of Type of Connection Members - (비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 II - 연결재 종류의 영향 -)

  • Kang, Sanghoon;Han, Manyop;Cho, Byeongdu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.217-225
    • /
    • 2012
  • Structural behavior of built-up compression members with unsymmetric connectors under buckling status has been studied through these experiments. When the distance between adjacent H-300 beams of built-up compression member is 2 m in length, and the H-300 beams are lengthened up to 30 m in length with three-10 m-H-beams by bolts and double arrayed, three specimen having each connector plate, single channel, double channel are experimented for evaluating buckling loads. The buckling loads from the experiments are compared with buckling loads of structural analysis using FEM and buckling loads of Timoshenko Eq. in order to figure out how the connectors' type affects on longitudinal and lateral displacements, also strain of the built-up compression members as well. The result from the experiments show that the buckling loads 4.2% decreases in double channel connectors and 36.6% decreases in single channel connectors than plate connectors.