• 제목/요약/키워드: compressible viscous Stokes flows

검색결과 10건 처리시간 0.009초

A STABILITY RESULT FOR THE COMPRESSIBLE STOKES EQUATIONS USING DISCONTINUOUS PRESSURE

  • Kweon, Jae-Ryong
    • 대한수학회지
    • /
    • 제36권1호
    • /
    • pp.159-171
    • /
    • 1999
  • We formulate and study a finite element method for a linearized steady state, compressible, viscous Navier-Stokes equations in 2D, based on the discontinuous Galerkin method. Dislike the standard discontinuous galerkin method, we do not assume that the triangle sides be bounded away from the characteristic direction. the unique stability follows from the inf-sup condition established on the finite dimensional spaces for the (incompressible) Stokes problem. An error analysis having a jump discontinuity for pressure is shown.

  • PDF

압축성 마이크로 유동에 관한 기초 연구 (A Fundamental Study of Compressible Micro Flows)

  • 김재형;정미선;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.143-146
    • /
    • 2002
  • Recently the micro flows have been received much attention in the applications with regard to Micro Electro Mechanical Systems(MEMS). Such flows are governed by relatively large viscous forces, compared with inetia force, and frequently specified by slip wall boundary conditions. In the present study, computations are applied to investigate the compressible viscous flows through an extremely small channel, and theoretical analyses are conducted using the Fanno flow theory. The axisymmetic, compressible, Wavier-Stokes equations are numerically solved by a fully implicit finite implicit method. The predicted results are validated with previous experimental data available. The results obtained show that for small Reynolds numbers, the viscous frictional force significantly influences the compressible micro channel flows.

  • PDF

삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석 (Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows)

  • 임예훈;장근식
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법 (A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range)

  • 심은보;장근식
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석 (Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade)

  • 정희택;백제현
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1915-1927
    • /
    • 1992
  • 본 연구에서는 3차원 압축성 내부유동해석 코드를 개발하여 터어빈 정익이나 동익 내부의 차원 익렬 유동을 수치적으로 해석하고자 한다. 여기에서 사용된 코드 는 Obyashi의 LU-ADI기법을 이용한 기존의 2차원 익렬 유동해석 코드를 3차원 유동장 으로 학장한 것이고, 난류유동해석에는, Baldwin-Lomax의 박층 대수모델을 3차원으로 확장한 알고리즘을 적용하였다.Kiock등이 실험한 선형 터어빈 익렬 내부의 천음속 유동장에 적용하여 양끝 벽면에 의한 3차원 유동장 특성을 분석하고, 3차원 익렬 유동 코드의 적합성을 검토하였다.

비정렬 혼합 격자계 기반의 삼차원 점성 유동해석코드 개발 (Development of a 3-D Viscous Flow Solver Based on Unstructured Hybrid Meshes)

  • 정문승;권오준
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.677-684
    • /
    • 2007
  • 본 연구에서는 삼차원 점성 유동을 효율적으로 해석하기 위해 사면체, 프리즘, 피라미드를 포함하는 비정렬 혼합격자계를 기반으로 하는 유동해석코드를 개발하였다. 유동의 지배방정식은 격자점 중심의 유한체적법을 사용하여 공간차분회었으며, 제어테적은 메디안 듀얼(median-dual)방법으로 구성하였다. 난류유동 해석은 Spalart-Allmaras 난류모형과 연계하여 계산되었다. 개발된 해석코드의 정상 유동 검증을 위해 삼차원 날개에 대한 층류, 난류유동을 해석하였으며, 비정상 유동 검증을 위해 조화운동에 의해 진동하는 삼차원 날개에 대한 유동해석을 수행하였다.

Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석 (Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method)

  • 최환석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence)

  • 노오현;황수정
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

압축기 익렬 유동해석을 위한 알고리즘과 난류 모델의 비교 연구 (Comparison of Algorithm & Turbulence Modelling for Calculation of Compressor Cascade Flows)

  • 김석훈;이기수;최정열;김귀순;임진식;김유일
    • 한국추진공학회지
    • /
    • 제4권4호
    • /
    • pp.59-69
    • /
    • 2000
  • 2차인 압축성/비압축성 Navier-Stokes 방정식은 이용하여 DCA 압푹기 익렬의 수치 해석을 수행하고 실험치와 비교 검토하였다. SIMPLE 알고리즘을 적용한 비압축성 코드는 대류항의 이산화에 하이브리드 도식을 진동해를 방지하기 위해 집중격자 기법을 사용하였다. 압축성 코드는 예조건화 기법 을 적용하였으며 공간 이산화출 위해 풍상 차분법을, 시간 적분을 위해서는 LU-SGS 기법을 사용하였다. 또한 난류 점성 유동장을 해석하기 위해 Baldwin-Lomax, standard $\kappa$ -$\varepsilon$, $\kappa$ -$\varepsilon$ Lam. Bremhorst, standard $\kappa$-$\omega$, $\kappa$ -$\omega$ SST 모델 등의 난류 모델을 적용하여 각 모델들의 특성을 살펴보았다.

  • PDF

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제9권5호
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.