• Title/Summary/Keyword: composite nanofiber

Search Result 90, Processing Time 0.024 seconds

Fabrication and characterization of graphite nanofiber reinforced aluminum matrix composites (탄소나노섬유 강화 알루미늄 복합재료의 제조 및 특성)

  • Jang J.H.;Oh K.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.35-38
    • /
    • 2004
  • Graphite nanofiber (GNF) and carbon nanotube (CNT) are novel fiber reinforcing materials which have outstanding physical and mechanical properties. Aluminum matrix composites reinforced graphite nanofiber were fabricated by conventional powder metallurgy (PM) method. The composites were prepared through ultrasonication, ball milling, and hot isostatic pressing. A uniform distribution of GNF in aluminum matrix could be obtained. To measure the mechanical properties of GNF-Al composites testings were done in indentation and compression. The compressive strength was enhanced according to reinforcing graphite nanofiber while the hardness was decreased. This study makes the high performance composites for future applications.

  • PDF

Capacitance Property for a Carbon-nanofiber/Cobalt Oxide Composite Electrode (탄소나노섬유/코발트산화물 복합전극의 케폐시턴스 특성)

  • Yoon, Yu-Il;Ko, Jang-Myoun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.482-485
    • /
    • 2008
  • Composite electrode consisting of carbon nanofiber (CNF) and cobalt oxide was prepared for supercapacitor electrode, and its electrochemical property was investigated by means of cyclic voltammetry. Cyclic voltammetric results for the composite electrode showed it had specific capacitance value of 420 F/g at 5 mV/s, which was higher than capacitance value of 180 F/g for the bare CNF. It is concluded that the capacitive property of CNF can be improved by coating cobalt oxide on it to increase the surface area of cobalt oxide.

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae;Um, In Chul;Lee, Sun-Young;Dufresne, Alain
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.119-129
    • /
    • 2014
  • This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.

Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites

  • Wu, Shi-Hong;Natsuki, Toshiaki;Kurashiki, Ken;Ni, Qing-Qing;Iwamoto, Masaharu;Fujii, Yoshimichi
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.195-206
    • /
    • 2007
  • Carbon nanofiber (CNF)/unsaturated polyester resin (UPR) was prepared by a solvent evaporation method, and the temperature dependency of electrical conductivity was investigated. The CNF/UPR composites had quite a low percolation threshold due to CNF having a larger aspect ratio and being well dispersed in the UPR matrix. The positive temperature coefficient (PTC) was found in the CNF/UPR composites and it showed stronger effect around the percolation threshold. The electrical resistance of the CNF/UPR composites decreased and had lower temperature dependency with increasing numbers of thermal cycles.

Preparation and Oil Absorption Properties of PAN Based 3D Shaped Carbon Nanofiber Sponge (폴리아크릴로니트릴 기반 3D 탄소나노섬유 스펀지의 제조 및 오일 흡착 특성)

  • Hye-Won Ju;Jin-Hyeok Kang;Jong-Ho Park;Jae-Kyoung Ko;Yun-Su Kuk;Changwoo Nam;Byoung-Suhk Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.217-223
    • /
    • 2023
  • In this work, the preparation and its oil adsorption behavior of polyacrylonitrile-based carbon nanofiber sponge were investigated. The prepared carbon sponges showed excellent selective oil adsorption in the mixture of water and oil, and the adsorption capacity of reused carbon nanofiber sponge was also investigated. Further, carbon nanofiber sponge adsorbent with internally structured channel showed fast oil adsorption behavior due to a capillary phenomenon. After use, sponge adsorbent was heat-treated at 800℃ under N2 and studied the possibility of a sensor for electrochemical detection of 4-aminophenol.

Carbon-nanofiber Reinforced Copper Composites Prepared by Powder Metallurgy for Thermal Management of Electronic Devices

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, J.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.844-845
    • /
    • 2006
  • For microelectronic circuits, the main type of failure is thermal fatigue. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers to meet these requirements. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed.

  • PDF

Study on Physical Properties of Waterborne Polyurethane and Carbon Nanofiber Composites (수분산 폴리우레탄 및 탄소나노섬유 복합체의 물리적 특성)

  • Lim, Suk-Dae;Ko, Sang-Choel;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.24-29
    • /
    • 2021
  • In this study, the electrical and mechanical properties of carbon polymer composites, which have been gradually increasing in use in various fields, were investigated, and environment-friendly carbon nanofiber/waterborne polyurethane composites were prepared. Carbon nanofibers (diameter = approximately 100-300 mm) were synthesized using a relatively simple CVD process, obtaining a carbon material for application in ultrathin planar heating films and EMP shielding films in the future. The carbon nanofiber was dispersed, and mixed with water-dispersible polyurethane using a dispersing aid. According to the carbon nanofiber mass ratio, 20%-60% polyurethane/carbon nanofiber composites were manufactured. At a concentration of approximately 20%, the percolation threshold was determined, and at a concentration of approximately 50%, an electrical conductivity greater than 0.1 S/cm was determined. Moreover, a sample having a concentration of up to 60% was evaluated to further understand the mechanical properties. It was observed that as the concentration of the carbon nanofibers increased, the elongation decreased.

Mechanical Property of Clay-polymer Nanofiber Composite Membrane (Clay를 함유한 Polysulfone 나노섬유 복합막의 제조 및 물리적 특성 연구)

  • Park, Yeji;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.284-289
    • /
    • 2017
  • In this study, natural clay as a filler was systematically integrated into polysulfone nanofibers to prepare polysulfone/clay composite membranes with mechanical properties. The composite nanofibers were formed by electrospinning of a mixed precursor of polysulfone and clay. The pore size of the composite membranes was adjusted by simply controlling the number of layers of nanofibers. The overall membrane properties were examined by SEM, contact angle, pore characteristics, tensile strength and water flux. In particular, the presence of clay within the nanofibers was confirmed with SEM images and the mechanical property of the composite nanofiber membranes was examined by tensile strength measurements. Thus, the prepared composite membranes were expected to be utilized for water treatment system.

Preparation of PAN Nanofiber Composite Membrane with $Fe_3O_4$ Functionalized Graphene Oxide and its Application as a Water Treatment Membrane (산화철이 기능화된 산화그래핀을 함유한 PAN 나노섬유 복합분리막의 제조 및 수처리용 분리막으로의 활용)

  • Jang, Wongi;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • In this study, the nanofiber composite membrane was prepared by electrospinning method with poly (ancrylonitrile) (PAN) and a dispersed solution of graphene oxide (GO) and $Fe_3O_4$ functionalized graphene oxide (M-GO) in dimethyl formamide (DMF). The pore-diameter of prepared membranes was controlled by change of those layers. It was confirmed with SEM that the nanofiber composite membranes having fiber size of 500 nm were prepared. It was found with Raman spectroscopy and EDS that GO and M-GO were well dispersed on those membranes. Final nanofiber composite membrane showed the similar pore properties ($0.21{\sim}0.24{\mu}m$/pore-size, 40% porosity) with the commercial membrane ($0.27{\mu}m$/pore-size, 55% porosity) and their water-flux results also showed the 200% higher flux than its PAN membrane. From these results, it was expected that the nanofiber composite membrane prepared by electrospinning method could be utilized as a water-treatment membrane.

CoMn Oxide/Carbon-nanofiber Composite Electrodes for Supercapacitors (코발트망간 산화물/탄소나노섬유 복합전극의 수퍼케폐시터 특성)

  • Kim, Yong-Il;Yoon, Yu-Il;Ko, Jang-Myoun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.493-496
    • /
    • 2008
  • Composite electrodes consisting of $CoMnO_2$ and carbon nanofibers(vapor grown carbon nanofiber, VGCF) with high electrical conducivity($CoMnO_2$/VGCF) were prepared on a porous nickel foam substrate as a current collector and their supercapacitive properties were investigated using cyclic voltammetry in 1 M KOH aqueous solution. The $CoMnO_2$/VGCF electrode exhibited high specific capacitance value of 630 F/g at 5 mV/s and excellent capacitance retention of 95% after $10^4$ cycles, indicating that the used VGCF played the important roles in reducing the interfacial resistance in the composite electrode to improve supercapacitive performance.