Browse > Article
http://dx.doi.org/10.5658/WOOD.2014.42.2.119

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning  

Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University)
Um, In Chul (Department of Bio-fibers and Materials Science, Kyungpook National University)
Lee, Sun-Young (Division of Wood Processing, Korea Forest Research Institute)
Dufresne, Alain (Grenoble Institute of Technology (Grenoble INP), The International School of Paper)
Publication Information
Journal of the Korean Wood Science and Technology / v.42, no.2, 2014 , pp. 119-129 More about this Journal
Abstract
This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.
Keywords
Cellulose nanofibril; TEMPO; Polyvinyl alcohol; Electrospinning; Nanofiber; Diameter distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y., Lee, S.H., Kim, H.J., Yang, Y.H., Hong, J.H., Kim, Y.H., and Kim, H. 2012. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr. Polym. 88(1): 395-398.   DOI   ScienceOn
2 Azizi Samir, M.A.S.A., Alloin, F., and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6: 612-626.   DOI   ScienceOn
3 Baumgarten, P.K. 1971. Electrostatic spinning of acrylic microfibers. J. Colloid. Interf. Sci. 36: 71 -79.   DOI   ScienceOn
4 de Nooy, A.E.J., Besemer, A.C., and van Bekkum, H. 1995. Highly selective nitroxyl radical- mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. 269: 89-98.   DOI   ScienceOn
5 Chronakis, I.S. 2005. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review. J. Mater. Process. Technol. 167: 283-293.   DOI   ScienceOn
6 de Nooy, A.E.J., Besemer, A.C., and van Bekkum, H. 1996.On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synth. 10: 1153-1174.
7 Bhardwaj, N., and Kundu, S.C. 2010. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28: 325-347.   DOI   ScienceOn
8 Cho, M., Park, B.D., and Kadla, J.F. 2012. Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites. J. Kor. Wood Sci. Technol. 40(2): 71-77.   과학기술학회마을   DOI   ScienceOn
9 Doshi, J. and Reneker, D.H. 1995. Electrospinning process and applications of electrospun fibers. J. Electrostat. 35: 151-160.   DOI   ScienceOn
10 Fong H., Chun I., Reneker D.H. 1999. Beaded nanofibers formed during electrospinning, Polymer 40: 4585-4592.   DOI   ScienceOn
11 Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., and Isogai, A. 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10(1): 162-165.   DOI   ScienceOn
12 Gupta, P., Elkins, C., Long, T.E., and Wilkes, G.L. 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polym. 46: 4799-4810.   DOI   ScienceOn
13 Isogai, A., Saito, T., and Fukuzumi, H. 2011. TEMPO-oxidized cellulose nanofibers Nanoscale, 3: 71-85.   DOI   ScienceOn
14 Khil, M.S., Kim, H.Y., Kang, Y.S., Bang, H.J., and Lee, D.R. 2005. Preparation of electrospun oxidized cellulose mats and their in vitro degradation behavior. Macromol. Res. 13(1): 62-67.   DOI
15 Hamad, W. 2002. Cellulosic Materials: Fibers, Networks and Composite, Kluwer Academic Publisher, Massachusetts.
16 Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S. 2003. A review of polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63: 2223-2253.   DOI   ScienceOn
17 Koski, A., Yim, K., and Shivkumat, S. 2004. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 58: 493-497.   DOI   ScienceOn
18 Mit-uppatham, C., Mithitanakul, M., and Supaphol, P. 2004. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phys. 205: 2327-2338.   DOI   ScienceOn
19 Rosic, R., Pelipenko, J., Kristi, J., Kocbek, P., Bester-Rogac, M., and Baumgartner, S. 2013. Physical characteristics of poly(vinyl alcohol) solutions in relation to electrosdpun nanofiber formation. Eur. Polym. J. 49: 290-29.   DOI
20 Saito, T., Nishiyama, Y., Putaux, J.L., Vignon. M., and Isogai, A. 2006. Homogeneous suspensions of individualized microfibrils from TEMPOcatalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-1691.   DOI   ScienceOn
21 Saito, T., Kimura, S., Nishiyama, Y., and Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8: 2485-2491.   DOI   ScienceOn
22 Suwantong, O., Opanasopit, P., Ruktanonchai, U., and Supaphol, P. 2007. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48: 7546-7557.   DOI   ScienceOn
23 Shinoda, R., Saito, T., Okita, Y., and Isogai, A. 2012. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13: 842-849.   DOI   ScienceOn
24 Son, W.K., Youk, J.H., and Lee, T.S. 2005. Effect of pH on electrospinning of poly(vinyl alcohol). Mater. Lett. 59: 1571-1575.   DOI   ScienceOn
25 Sturcova, A., Davies, G.R., and Eichhorn, S.J. 2005. Elastic modulus and stress transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6: 1055-1061.   DOI   ScienceOn
26 Tashiro, K., and Kobayashi, M. 1991. Theoretical evaluation of three dimensional elastic constants of native and regenerated cellulose: role of hydrogen bonds. Polymer 32: 1516-1526.   DOI   ScienceOn
27 Zhang, C., Yuan, X., Wu, L., Han, Y., and Sheng, J. 2005. Study on morphology ofelectrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41(3): 423-432.   DOI   ScienceOn
28 Saito, T., andIsogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 5: 1983-1989.   DOI   ScienceOn
29 Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., and Rojas, O.J. 2010. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules, 11: 674-681.   DOI   ScienceOn
30 Eichhorn, S.J., Dufresne. A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., and Peijs, T. 2010. Review: current international research into cellulose nanofibres and nanocomposites. J.Mater. Sci. 45: 1-33.   DOI   ScienceOn