• Title/Summary/Keyword: composite membrane

Search Result 761, Processing Time 0.021 seconds

Composite Membrane Containing a Proton Conductive Oxide for Direct Methanol Fuel Cell

  • Peck, Dong-Hyun;Cho, Sung-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Kim, Jeong-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • The composite membrane for direct methanol fuel cell (DMFC) was developed using $H_3O^+-{\beta}"-Al_2O_3$ powder and perfluorosulfonylfluroride copolymer (Nafion) resin. The perfluorosulfonylfluroride copolymer (Nafion) resin was mixed with $H_3O^+-{\beta}"-Al_2O_3$ powder and it was made to sheet form by hot pressing. The electrodes were prepared with 60 wt% PtRu/C and 60wt% Pt/C catalysts for anode and cathode, respectively. The morphology and the chemical composition of the composite membrane have been investigated by using SEM and EDXA, respectively. The composite membrane and $H_3O^+-{\beta}"-Al_2O_3$ were analyzed by using FT-IR and XRD. The methanol permeability of the composite membranes was also measured by gas chromatography (GC). The performance of the MEA containing the composite membrane (2wt% $H_3O^+-{\beta}"-Al_2O_3$) was higher than that of normal pure Nafion membrane at high operating temperature (e.g. $110^{\circ}C$), due to the homogenous distribution of $H_3O^+-{\beta}"-Al_2O_3$, which decreased the methanol permeability through the membrane and enhanced the water contents in the composite membrane.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

A Study on the Preparation of Thin-Film Composite Membrane with Polyethersulfone Supporting Membrane (역삼투 복합막 제조(II) 폴리에테르설폰막의 제조와 복합막 제조에 관한 연구)

  • 이동진;민병렬;이병철;송희열
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The performane of prepared Thin-Film Composite membrane depends on supporting membrane, concentration of monomers, dipping time of supporting membrane into monomer solution, reachon time between monomers, curing temperature and time and posttreatment. This study was conducted for searching the optimal condition for making the composite membrane. For this purpose, supporting membrane and composite membrane was made under various condition and at each step were tested.

  • PDF

Application of Low Temperature Plasma Treatment to the Fabrication of Thin Film Composite Membrane (저온 플라즈마 공정의 복합막 제조에의 응용)

  • 김현일;김성수;전배혁
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.120-122
    • /
    • 1998
  • 현재 상업화되어있는 RO membrane으로는 크게 asymmetric membrane과 composite membrane으로 구분될 수 있다. Asymmetric membrane의 소재로는 Cellulose acetate나 Cellulose triacetate와 같은 것들이 사용되며 현재에도 많이 사용되고 있으나, 보다 더 우수한 성능을 갖는 분리막을 제조하기 위해 현재에는 주로 composite membrane 형태로 제조된다. 대부분의 composite membrane은 계면중합에 의해 제조되는데 대표적인 membranem으로는 FT-30이 있다. 이 밖에도 support의 표면을 직접 플라즈마 처리하여 복합막을 제조하는 공정이 있으며 polyactrylonitrile과 같은 membrane이 이에 속한다. 플라즈마 처리된 복합막은 처리 대상에 크게 영향을 받지 않고 support 표면에 crosslinking의 형태로 형성되기 때문에 active layer가 매우 안정하며 따라서 우수한 물리화학적 성질을 기대할 수 있다. 이밖에도 분리막 표면을 친수성 단량체로 플라즈마 처리함으로써 분리막 표면에 친수성을 부여하거나 관능기를 도입함으로써 불활성 표면을 활성화 시킬 수도 있는 등의 여러가지 장점을 가지고 있다.

  • PDF

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.

Preparation and Properties of Chitosan/Montmorillonite Supported Phosphotungstic Acid Composite Membrane for Direct Methanol Fuel Cell Application

  • Purwanto, Mochammad;Widiastuti, Nurul;Gunawan, Adrian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.375-381
    • /
    • 2021
  • Chitosan powder is synthesized by a deasetylation process of chitin, obtained from processing of dried shrimp shell powder. Subsequently, chitosan (CS) membranes filled by montmorillonite (MMT) particles and phosphotungstic acid are prepared, and characterized by FT-IR and SEM. The morphology, obtained by SEM for the composite membrane, showed that MMT filler is successfully incorporated and relatively well dispersed in the chitosan polymer matrix. Water and methanol uptake for the CS/MMT composite membranes decrease with increasing MMT loadings, but IEC value increases. In all prepared CS/MMT composite membranes, the CS membrane filled by 5 wt% MMT particles exhibits the best proton conductivity, while that with 10 wt% MMT loading exhibits the lowest methanol permeability; these values are 2.67 mS·cm-1 and 3.40 × 10-7 cm2·s-1, respectively. The best membrane selectivity is shown in the CS/MMT10 composite membrane; this shows that 10 wt% filled MMT is the optimum loading to improve the performance of the chitosan composite membrane. These characteristics make the developed chitosan composite membranes a promising electrolyte for direct methanol fuel cell (DMFC) application.

Reclamation of Waste Lubricating Oil Using Ceramic Micro/Ultrafiltration Composite Membrances (세라믹 정밀/한외여과 복합막을 이용한 폐윤활유 정제)

  • 김계태;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • The permeation characteristics and reclamation efficiency of waste lubricating oil were studied as a function of the types of ceramic composite membranes and the membrane separation process variables. The oil permeability of the TiO2 composite membrane(pore size 0.015 $\mu\textrm{m}$) was directly proportional to the crossflow velocity(0.22∼0.9 m/s) and temperature(150$^{\circ}C$∼200$^{\circ}C$). In the batch concentration process, as the concentration factor increased, both the permeability and the ash content of the permeate decreased. The average ash contents of the total permeate through the A6 alumina membrane(average pore size 0.8$\mu\textrm{m}$), Z1/A6 and Z1/A4(pore size 0.23$\mu\textrm{m}$)/A7(pore size 6$\mu\textrm{m}$) zirconia composite membrances(average pore size 0.07$\mu\textrm{m}$) were about 0.063 wt%, 0.045wt% and 0.08wt% in the region of 1∼2 concentration factor, respectively. The ash content of the mixed permeate through the A6 alumina and zirconia composite membrane was about 0.06 wt% and it can be also reduced to 0.06 wt% in the Z1/A6 membrane and below 0.003 wt% in the TiO2/Z1/A6 membrane. It was concluded that the treated oil obtained from the multi-step membrane separation process could be used as reclaimed lubricating oil as well as reclained fuel oil.

  • PDF

Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster (확장된 이온 클러스터를 갖는 음이온 교환막 개발을 위한 그래핀 옥사이드를 함유한 폴리(페닐렌 옥사이드) 기반 유·무기 복합막의 제조 및 특성분석)

  • CHU, JI YOUNG;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.524-533
    • /
    • 2021
  • In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.