Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.7.375

Preparation and Properties of Chitosan/Montmorillonite Supported Phosphotungstic Acid Composite Membrane for Direct Methanol Fuel Cell Application  

Purwanto, Mochammad (Department of Chemical Engineering, Institut Teknologi Kalimantan)
Widiastuti, Nurul (Department of Chemistry, Institut Teknologi Sepuluh Nopember)
Gunawan, Adrian (Department of Chemical Engineering, Institut Teknologi Kalimantan)
Publication Information
Korean Journal of Materials Research / v.31, no.7, 2021 , pp. 375-381 More about this Journal
Abstract
Chitosan powder is synthesized by a deasetylation process of chitin, obtained from processing of dried shrimp shell powder. Subsequently, chitosan (CS) membranes filled by montmorillonite (MMT) particles and phosphotungstic acid are prepared, and characterized by FT-IR and SEM. The morphology, obtained by SEM for the composite membrane, showed that MMT filler is successfully incorporated and relatively well dispersed in the chitosan polymer matrix. Water and methanol uptake for the CS/MMT composite membranes decrease with increasing MMT loadings, but IEC value increases. In all prepared CS/MMT composite membranes, the CS membrane filled by 5 wt% MMT particles exhibits the best proton conductivity, while that with 10 wt% MMT loading exhibits the lowest methanol permeability; these values are 2.67 mS·cm-1 and 3.40 × 10-7 cm2·s-1, respectively. The best membrane selectivity is shown in the CS/MMT10 composite membrane; this shows that 10 wt% filled MMT is the optimum loading to improve the performance of the chitosan composite membrane. These characteristics make the developed chitosan composite membranes a promising electrolyte for direct methanol fuel cell (DMFC) application.
Keywords
chitosan; membrane; montmorillonite; phosphotungstic acid; fuel cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Heo, S. Yun, H. Im and J. Kim, J. Appl. Polym. Sci., 126, 1 (2012).   DOI
2 G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 22, 421 (2012).   DOI
3 F. Lufrano, V. Baglio, P. Staiti, V. Antonucci and A. S. Arico, J. Power Sources, 243, 519 (2013).   DOI
4 H. Wu, B. Zheng, X. Zheng, J. Wang, W. Yuan and Z. Jiang, J. Power Sources, 173, 842 (2007).   DOI
5 Y. Wang, D. Yang, X. Zheng, Z. Jiang and J. Li, J. Power Sources, 183, 454 (2008).   DOI
6 B. P. Tripathi, V. K. Shahi, Prog. Polym. Sci., 36, 945 (2011).   DOI
7 C. Chen, Z. Gao, X. Qiu and S. Hu, Molecules, 18, 7239 (2013).   DOI
8 E. Amendola, A. M. Scamardella, G. Callegaro, M. Lavorgna, F. Piscitelli and V. Romeo, Open Macromol. J., 6, 33 (2012).   DOI
9 S.-H. Lee, S.-H. Choi, S.-A. Gopalan, K.-P. Lee and G. Anantha-Iyengar, Int. J. Hydrogen Energy, 39, 17162 (2014).   DOI
10 M. F. Samberan, M. M. Hasani-Sadrabadi, S. R. Ghaffarian and A. Alimadadi, Int. J. Hydrogen Energy, 38, 14076 (2013).   DOI
11 S.-H. Lee, S.-H. Choi, S.-A. Gopalan, K.-P. Lee and G. Anantha-Iyengar, Int. J. Hydrog. Energy., 39, 17162 (2014).   DOI
12 Z. Cui, W. Xing, C. Liu, J. Liao and H. Zhang, J. Power Sources, 188, 24 (2009).   DOI
13 A. Shirdast, A. Sharif and M. Abdollahi, J. Power Sources, 306, 541 (2016).   DOI
14 K. Dutta, S. Das and P. P. Kundu, J. Membr. Sci., 473, 94 (2014).   DOI
15 R. Gosalawit, S. Chirachanchai, S. Shishatskiy and S. P. Nunes, J. Membr. Sci., 323, 337 (2008).   DOI
16 J. Wang, C. Zhao, L. Zhang, M. Li, J. Ni, S. Wang, W. Ma, Z. Liu and H. Na, Int. J. Hydrogen Energy, 37, 12586 (2012).   DOI
17 M. Santamaria, C. M. Pecoraro, F. D. Quarto and P. Bocchetta, J. Power Sources, 276, 189 (2015).   DOI
18 J. Wang and L. Wang, Solid State Ionics, 255, 96 (2014).   DOI
19 H. Lin, C. Zhao, W. Ma, K. Shao, H. Li, Y. Zhang and H. Na, J. Power Sources, 195, 762 (2010).   DOI
20 Y. Ting, L. Pu, Q. Huang, H. Zhang, X. Li and H. Yang, Electrochim. Acta, 117, 393 (2014).   DOI
21 T.-H. Nguyen, S.-J. Lee, Y.-K. Min and B.-T. Lee, Korean J. Mater. Res., 21, 125 (2011).   DOI
22 J. Ma and Y. Sahai, Carbohydr. Polym., 92, 955 (2013).   DOI
23 N. C. Mat and A. Liong, Eng. Lett., 17, 14 (2009).
24 B. P. Tripathi, M. Kumar, A. Saxena and V. K.Shahi, J. Colloid Interface Sci., 346, 54 (2010).   DOI
25 A. H. Khan, P. Bala, A. F. M. M. Rahman and M. Nurnabi, Dhaka Univ. J. Sci., 60, 25 (2012).   DOI
26 C.-C. Yang, Int. J. Hydrogen Energy, 36, 4419 (2011).   DOI
27 M. A. Khedr, A. I. Waly, A. I. Hafez and H. Ali, Aust. J. Basic Appl. Sci., 6, 216 (2012).
28 E. Trisnawati, D. Andesti and A. Saleh, J. Chem. Eng., 19, 17 (2013).
29 Y. Wang, Z. Jiang, H. Li and D. Yang, Chem. Eng. Process., 49, 278 (2010).   DOI
30 T. Xu, W. Hou, X. Shen, H. Wu, X. Li, J. Wang and Z. Jiang, J. Power Sources, 196, 4934 (2011).   DOI
31 P. S. Rachipudi, A. A. Kittur, S. K. Choudhari, J. G. Varghese and M. Y. Kariduraganavar, Eur. Polym. J., 45, 3116 (2009).   DOI
32 Y. Xiao, Y. Xiang, R. Xiu and S. Lu, Carbohydr. Polym., 98, 233 (2013).   DOI
33 H. Liu, C. Gong, J. Wang, X. Liu, H. Liu, F. Cheng, G. Wang, G. Zheng, C. Qin and S. Wen, Carbohydr. Polym., 136, 1379 (2016).   DOI
34 R. Gosalawit, S. Chirachanchai, S. Shishatskiy and S. P. Nunes, J. Membr. Sci., 323, 337 (2008).   DOI
35 J. L. Lu, Q. H. Fang, S. L. Li and S. P. Jiang, J. Membr. Sci., 427, 101 (2013).   DOI