DOI QR코드

DOI QR Code

Preparation and Properties of Chitosan/Montmorillonite Supported Phosphotungstic Acid Composite Membrane for Direct Methanol Fuel Cell Application

  • Purwanto, Mochammad (Department of Chemical Engineering, Institut Teknologi Kalimantan) ;
  • Widiastuti, Nurul (Department of Chemistry, Institut Teknologi Sepuluh Nopember) ;
  • Gunawan, Adrian (Department of Chemical Engineering, Institut Teknologi Kalimantan)
  • Received : 2021.01.06
  • Accepted : 2021.06.09
  • Published : 2021.07.27

Abstract

Chitosan powder is synthesized by a deasetylation process of chitin, obtained from processing of dried shrimp shell powder. Subsequently, chitosan (CS) membranes filled by montmorillonite (MMT) particles and phosphotungstic acid are prepared, and characterized by FT-IR and SEM. The morphology, obtained by SEM for the composite membrane, showed that MMT filler is successfully incorporated and relatively well dispersed in the chitosan polymer matrix. Water and methanol uptake for the CS/MMT composite membranes decrease with increasing MMT loadings, but IEC value increases. In all prepared CS/MMT composite membranes, the CS membrane filled by 5 wt% MMT particles exhibits the best proton conductivity, while that with 10 wt% MMT loading exhibits the lowest methanol permeability; these values are 2.67 mS·cm-1 and 3.40 × 10-7 cm2·s-1, respectively. The best membrane selectivity is shown in the CS/MMT10 composite membrane; this shows that 10 wt% filled MMT is the optimum loading to improve the performance of the chitosan composite membrane. These characteristics make the developed chitosan composite membranes a promising electrolyte for direct methanol fuel cell (DMFC) application.

Keywords

Acknowledgement

The author would like to express gratitude to Ministry of Research and Technology/National Agency for Research and Innovation for the financial support, and also to the Research institutions and community service, Institut Teknologi Sepuluh Nopember for supporting the research management activities.

References

  1. Y. Heo, S. Yun, H. Im and J. Kim, J. Appl. Polym. Sci., 126, 1 (2012). https://doi.org/10.1002/app.38085
  2. G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 22, 421 (2012). https://doi.org/10.3740/MRSK.2012.22.8.421
  3. Y. Ting, L. Pu, Q. Huang, H. Zhang, X. Li and H. Yang, Electrochim. Acta, 117, 393 (2014). https://doi.org/10.1016/j.electacta.2013.11.063
  4. J. L. Lu, Q. H. Fang, S. L. Li and S. P. Jiang, J. Membr. Sci., 427, 101 (2013). https://doi.org/10.1016/j.memsci.2012.09.041
  5. F. Lufrano, V. Baglio, P. Staiti, V. Antonucci and A. S. Arico, J. Power Sources, 243, 519 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.180
  6. J. Wang and L. Wang, Solid State Ionics, 255, 96 (2014). https://doi.org/10.1016/j.ssi.2013.12.013
  7. H. Wu, B. Zheng, X. Zheng, J. Wang, W. Yuan and Z. Jiang, J. Power Sources, 173, 842 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.020
  8. Y. Wang, D. Yang, X. Zheng, Z. Jiang and J. Li, J. Power Sources, 183, 454 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.003
  9. T.-H. Nguyen, S.-J. Lee, Y.-K. Min and B.-T. Lee, Korean J. Mater. Res., 21, 125 (2011). https://doi.org/10.3740/MRSK.2011.21.2.125
  10. B. P. Tripathi, V. K. Shahi, Prog. Polym. Sci., 36, 945 (2011). https://doi.org/10.1016/j.progpolymsci.2010.12.005
  11. C. Chen, Z. Gao, X. Qiu and S. Hu, Molecules, 18, 7239 (2013). https://doi.org/10.3390/molecules18067239
  12. J. Ma and Y. Sahai, Carbohydr. Polym., 92, 955 (2013). https://doi.org/10.1016/j.carbpol.2012.10.015
  13. N. C. Mat and A. Liong, Eng. Lett., 17, 14 (2009).
  14. B. P. Tripathi, M. Kumar, A. Saxena and V. K.Shahi, J. Colloid Interface Sci., 346, 54 (2010). https://doi.org/10.1016/j.jcis.2010.02.022
  15. A. H. Khan, P. Bala, A. F. M. M. Rahman and M. Nurnabi, Dhaka Univ. J. Sci., 60, 25 (2012). https://doi.org/10.3329/dujs.v60i1.10331
  16. C.-C. Yang, Int. J. Hydrogen Energy, 36, 4419 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.011
  17. M. A. Khedr, A. I. Waly, A. I. Hafez and H. Ali, Aust. J. Basic Appl. Sci., 6, 216 (2012).
  18. E. Trisnawati, D. Andesti and A. Saleh, J. Chem. Eng., 19, 17 (2013).
  19. Y. Wang, Z. Jiang, H. Li and D. Yang, Chem. Eng. Process., 49, 278 (2010). https://doi.org/10.1016/j.cep.2010.02.004
  20. T. Xu, W. Hou, X. Shen, H. Wu, X. Li, J. Wang and Z. Jiang, J. Power Sources, 196, 4934 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.017
  21. E. Amendola, A. M. Scamardella, G. Callegaro, M. Lavorgna, F. Piscitelli and V. Romeo, Open Macromol. J., 6, 33 (2012). https://doi.org/10.2174/1874343901206010033
  22. P. S. Rachipudi, A. A. Kittur, S. K. Choudhari, J. G. Varghese and M. Y. Kariduraganavar, Eur. Polym. J., 45, 3116 (2009). https://doi.org/10.1016/j.eurpolymj.2009.08.011
  23. Y. Xiao, Y. Xiang, R. Xiu and S. Lu, Carbohydr. Polym., 98, 233 (2013). https://doi.org/10.1016/j.carbpol.2013.06.017
  24. S.-H. Lee, S.-H. Choi, S.-A. Gopalan, K.-P. Lee and G. Anantha-Iyengar, Int. J. Hydrogen Energy, 39, 17162 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.181
  25. H. Liu, C. Gong, J. Wang, X. Liu, H. Liu, F. Cheng, G. Wang, G. Zheng, C. Qin and S. Wen, Carbohydr. Polym., 136, 1379 (2016). https://doi.org/10.1016/j.carbpol.2015.09.085
  26. R. Gosalawit, S. Chirachanchai, S. Shishatskiy and S. P. Nunes, J. Membr. Sci., 323, 337 (2008). https://doi.org/10.1016/j.memsci.2008.06.038
  27. M. Santamaria, C. M. Pecoraro, F. D. Quarto and P. Bocchetta, J. Power Sources, 276, 189 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.147
  28. M. F. Samberan, M. M. Hasani-Sadrabadi, S. R. Ghaffarian and A. Alimadadi, Int. J. Hydrogen Energy, 38, 14076 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.111
  29. S.-H. Lee, S.-H. Choi, S.-A. Gopalan, K.-P. Lee and G. Anantha-Iyengar, Int. J. Hydrog. Energy., 39, 17162 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.181
  30. Z. Cui, W. Xing, C. Liu, J. Liao and H. Zhang, J. Power Sources, 188, 24 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.108
  31. R. Gosalawit, S. Chirachanchai, S. Shishatskiy and S. P. Nunes, J. Membr. Sci., 323, 337 (2008). https://doi.org/10.1016/j.memsci.2008.06.038
  32. H. Lin, C. Zhao, W. Ma, K. Shao, H. Li, Y. Zhang and H. Na, J. Power Sources, 195, 762 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.020
  33. A. Shirdast, A. Sharif and M. Abdollahi, J. Power Sources, 306, 541 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.076
  34. K. Dutta, S. Das and P. P. Kundu, J. Membr. Sci., 473, 94 (2014). https://doi.org/10.1016/j.memsci.2014.09.010
  35. J. Wang, C. Zhao, L. Zhang, M. Li, J. Ni, S. Wang, W. Ma, Z. Liu and H. Na, Int. J. Hydrogen Energy, 37, 12586 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.003