• Title/Summary/Keyword: composite laminated plates

Search Result 399, Processing Time 0.022 seconds

Design Optimization of Blade Stiffened Laminated Composite Plates (보강된 적층평판의 최적화 설계)

  • Shin, Yung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 1993
  • The buckling load of a blade stiffened laminated composite plate having midplane symmetry is maximized for a given total weight. The thicknesses of the layers and the width and height of the stiffener are taken as the design variables. Buckling analysis is carried out using a finite element method. The optimization problem is solved using an IMSL subroutine. Due to the highly nonlinear nature of the optimality equations, several local optimum solutions are found. Various combinations of fiber orientation for the laminate layers and the blade stiffener are investigated to examine their relative efficiency. Out of several cases examined, the best design was produced from the combination of ($0^{\circ}Beam/0^{\circ}/90^{\circ}$)s.

  • PDF

Partial Layerwise-to-ESL Coupling Elements for Multiple Model Analysis (다중모델 해석을 위한 부분층별-등가단층 결합요소)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the p-convergent coupling element on the basis of the ESSE(equivalent single layer shell element) and the PLLE(partial-linear layerwise element) to analyze laminated composite plates. The ESSE is formulated by the degenerated shell theory, on the other hand, the assumption of the PLLE is piecewise linear variation of the in-plane displacement and a constant value of lateral displacement across the thickness. The proposed finite element model is based on p-convergence approach. The integrals of Legendre polynomials and Gauss-Lobatto technique are chosen to interpolate displacement fields and to implement numerical quadrature, respectively. This study has been focused on the verification of p-convergent element. For this purpose, various finite element multiple models associated with the combination of ESSE and PLLE elements are tested to show numerical stability. The simple examples such as a cantilever beam subjected vertical load and a plate with tension are adopted to evaluate the performance of proposed element.

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

A Study on the Impact Damage and Residual Strength of CFRP Composite Laminates under Low Temperature (저온하에서 CFRP 적층재의 충격 손상과 잔류 강도 -저/고온하에서 CFRP 적층재의 충격 손상을 중심으로 -)

  • Yang, I.Y.;Jung, J.A.;Cha, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • In this paper, the effects of temperature change (low and high temperature) on the impact damages of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CF/epoxy orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_6/90^{\circ}\;_6]s$ and $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And CF/PEEK orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And, this study aims experimentally to present the interrelations between the impact energy vs. impact damages (i.e. delamination area and matrix crack) of CFRP laminates (CF/epoxy, CF/PEEK) subjected to FOD(foreign object damage) under low and high temperatures. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages.

  • PDF

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

Free Vibration Analysis based on HSDT of Laminated Composite Plate Structures Using Multi-scale Approach (멀티 스케일 접근 방법에 의한 복합소재 적층 판구조의 HSDT 기반 고유진동 해석)

  • Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of composite plate structures for construction using multi-scale approaches, which is based on the higher-order theory. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite plates for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

A laminated composite plate finite element a-priori corrected for locking

  • Filho, Joao Elias Abdalla;Belo, Ivan Moura;Pereira, Michele Schunemann
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.603-633
    • /
    • 2008
  • A four-node plate finite element for the analysis of laminated composites which is developed using strain gradient notation is presented. The element is based on a first-order shear deformation theory and on the equivalent lamina assumption. Strains and stresses can be calculated at different points through the thickness of the plate. They are averaged values due to the equivalent lamina assumption. A shear correction factor is used as the transverse shear strain is taken to be constant over the plate thickness while its actual variation is parabolic. Strain gradient notation, which is physically interpretable, allows for the detailed a-priori analysis of the finite element model. The polynomial expansions are inspected and spurious terms responsible for modeling errors are identified in the shear strains polynomial expansions. The element is corrected by simply removing the spurious terms from the shear strains expansions. The element is implemented into a FORTRAN finite element code in two versions; namely, with and without spurious terms. Results are compared to show the effects of the spurious terms on the solutions. It is also shown that a refined mesh composed of corrected elements provides solutions which approximate very well the analytical solutions, validating the procedure.

Vibration Analysis of Composite Laminated Plates with Increasing Aspect Ratio by Invariant and Correction Factor (형상비 변화에 따른 불변량과 수정계수를 사용한 적층복합판의 진동해석)

  • Park, Je-Sun;Lee, Jung-Ho;Hong, Chang-Woo;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.227-233
    • /
    • 1999
  • Simple equations which can predict "exact" values of the natural frequency of vibration for the special orthotropic laminates are presented. Many laminates with certain orientations have decreasing values of $B_{16}$ and $B_{26}$ as the number of plies increases. Such laminates, with $D_{16}=D_{26}{\rightarrow}0$, including the laminates with anti-symmetric configurations can be solved by the same equation for the special orthotropic laminates. If the quasi-isotropic constants are used, the equations for the isotropic plates can be used. Use of some coefficients cab produce "exact" value for laminates with such configurations. Natural frequencies of the plate with varying aspect ratios is presented.

  • PDF

Natural Frequency of Elastic Supported Building Slab (탄성지지된 복합재료 상판의 고유 진동수)

  • 김덕현;이정호;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.215-222
    • /
    • 1997
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the subject problem is presented. This problem represents the building slabs with a kind of passive and active control devices. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

Strong formulation finite element method for arbitrarily shaped laminated plates - Part II. Numerical analysis

  • Fantuzzi, Nicholas;Tornabene, Francesco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.145-175
    • /
    • 2014
  • The results of a series of numerical experiments are presented to verify some of the important developments made in the first part of this paper. Firstly, the static solution of an algebraic system obtained through Strong Formulation Finite Element Method (SFEM) is presented. Secondly, the stress and strain recovery procedure is descripted for the present technique. It will be clear that the present approach is suitable for any strong formulation finite element methodology, due to the presented general approach based on the unknown displacements and on the elasticity equations. Thirdly, the numerical solutions for some classical and other numerical results found in literature are exposed. Finally, an arbitrarily shaped composite plate is solved and good agreement is observed for all the presented cases.