• Title/Summary/Keyword: composite fibrous

Search Result 73, Processing Time 0.043 seconds

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu;Choi, Sunho;Do, Jiyae;Lim, Seungwoo;Shin, Dongwook
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.413-418
    • /
    • 2018
  • All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

Degradation Behavior of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid) (Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 생분해 거동)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • The purpose of the study is to apply composites of poly (glycolic acid) (PGA) with [poly(R) 3-hydroxybutyrate] (P3HB) or poly (butylenes succinate- co-L-lactate) (PBSL) as medical resorbable composite materials with the complement of hydrolysis rate of each component. As a result, it was confirmed that the PBSL/PGA and P3HB/PGA composite fiber were hydrolyzed in phosphate buffer solution. Also, it has been revealed that the degradation of PBSL/PGA are accelerated due to PGA producing glycolic acid which can act as a catalyst. In addition, the hydrolysis of PBSL/PGA was found to be accelerated by the presence of lipase PS. When the PBSL/PGA composite fiber was placed in the air, not much hydrolysis has proceeded. Also, it was confirmed that the P3HB/PGA composite fiber maintained proper tensile strength in the air. Therefore, these complex fibers can be adapted to use as environmentally suitable, medically absorbable composite materials.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

Biodegradable Hydroxyapatite/Chitosan Composites on the Bone Defect of Canine Model

  • Kim, Jooho;Lee, Dongbin;Heo, Suyoung;Kim, Namsoo
    • Journal of Veterinary Clinics
    • /
    • v.34 no.6
    • /
    • pp.410-413
    • /
    • 2017
  • Composites of hydroxyapatite (HAp) and chitosan (CS) have been successfully used in bone healing in humans and animals. However, the characteristics of HAp and CS are different. Therefore, the effects of HAp/CS composites on canine bone formation could differ according to their ratio. This study investigated the therapeutic effects of different contents ratios (100, 80:20, 60:40 wt%) on bone defects in a canine model. Thirty intrabony cylindrical defects were created in the humeruses and femurs of 5 beagle dogs, and then the defects were implanted with different composites. The evaluations were performed using radiographs obtained at 10 weeks post-surgery and by histological findings. In radiographic evaluation including the grades of bone filling, periosteal and endosteal reactions, pure hydroxyapatite composite had a significant effect on bone filling, and chitosan containing the composites showed vigorous responses at the periosteum and endosteum. In histological findings, the defect implanted with pure hydroxyapatite had healed completely into mature bony tissue with an obvious osteon structure, and the defect implanted with chitosan containing the composites had the amount of fibrous connective tissue increased significantly within the cortical bone tissue. The results indicate that hydroxyapatite/chitosan composites are therapeutically useful, promoting effective bone healing in defects when the ratio of hydroxyapatite is high and enhanced fibrous connective tissue formation at the periosteum as more chitosan is added.

Ectopic Bone Formation Induced By BMP - Fibrous Collagen Membrane Composite (BMP-교원질 섬유막 복합체에 의한 이소성 골형성)

  • Shin, Hong-In;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.68-79
    • /
    • 1996
  • To investigate the efficiency of a fibrous collagen membrane(FCM) composed of bovine skin type I atelocollagen as a carrier for BMP, partially purified bovine BMP/FCM($0.3mg/10{\times}5{\times}1mm$) composites were implanted into the dorsal subcutaneous tissue of rats. FCM alone was also implanted as a control. The implants were harvested at 1, 2, 3, and 10 weeks after implantation, then prepared for routine light microscopic observation. The FCM alone did not induce osteogenesis and revealed no specific foreign body reaction nor was there any definite resorptive evidence for 10 weeks after implantation, while the BMP/FCM composites induced favorable bone formation in a process that resembled an endochondral and direct ossification mode. At 10 weeks, the well formed bone confined to embedded collagen fibers revealed hematopoietic marrow between bony trabeculae without evidence of resorptive or degenerative changes . These findings support the suggestion that BMP may induce undifferentiated mesenchymal cells into either chondroblasts or osteoblasts or both independantly according to the chemico- physical characteristics of the carrier, which develops the endochondral and/or direct bone formation process, and suggest that the FCM may be a favorable carrier for BMP.

  • PDF

Preparation of Alginate-fibroin Beads with Diverse Structures (다양한 구조를 가진 알긴산-피브로인 비드 제조)

  • Lee, Jin-Sil;Lee, Shin-Young;Hur, Won
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.422-426
    • /
    • 2011
  • Alginate bead has been supplemented with various polymers to control permeability and to enhance mechanical strength. In this report, fibroin-reinforced alginate hydrogel was prepared, in which spatial localization of fibroin molecules was investigated. Confocal laser scanning microscopy revealed that fibroin molecules formed a fibrous network in the alginate-fibroin beads, which was expected to enhance mechanical strength as same as in many composite materials. Uniaxial compression test showed that fibroin-reinforced alginate beads had increased mechanical strength only after methanol treatment that caused ${\beta}$-sheet formation among fibroin molecules. Simultaneous curing and dialysis of alginate beads were carried out to remove excesscalcium but to retain fibroin in the dialysis chamber, which fabricated beads without internal fibrous fluorescent stains. Fibroin molecules were only found beneath the surface of the beads. The fibroin-diffused shell was further processed to form a thick wall after drying or was mobilizedto the centre of the bead by methanol treatment. Accordingly, the structure analyses provide processing methods of fibroin to form a wall or center clumps, which could be applied to design controlled delivery device.

A Study on the Characteristics of the Hybrid Carbons Filled Poly(Phenylene Sulfide) Composite Bipolar Plates of Fuel Cell (하이브리드카본이 충전된 Poly(Phenylene Sulfide) 복합재 연료전지 분리판 특성 연구)

  • Kim, Nam-Hoon;Park, Ok-Kyung;Lee, Chang-No;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.172-175
    • /
    • 2009
  • A bipolar plate is an important component in a fuel cell in the sense of cost and weight. This study aimed at developing highly conductive, lightweight, and low cost bipolar plates. Hybrid carbons filled poly(phenylene sulfide)(PPS) composite bipolar plates were prepared by using the compression molding technique. Various types and amounts of conducting carbon fillers such as graphite, carbon black, carbon fibers, and carbon nanotubes (CNTs) were adopted for the composites. Electrical conductivity and mechanical properties of the composites were measured in order to investigate effects of each components of fillers. When the graphite is only used as a conducting filler, the electrical conductivity of the composites increases with increasing the content, but the flexural strength decreases dramatically. However, for CNTs and carbon fibers, the flexural strength initially increases and then decreases with increasing the amount of the conducting fillers. The amount of graphite corresponding to the peak of flexural strength was moved to lower content with increasing the amount of CNTs or carbon fiber. When hybrid conducting fillers such as fibrous and particulate fillers were used, the synergy effect in mechanical and electrical properties was observed.

  • PDF

A New Evaluation Method for Interfacial Properties of Composites using the Gradual Multi-Fiber Fragmentation Test (단계적 다섬유 Fragmentation 시험법을 이용한 복합재료의 계면적 특성에 대한 새로운 평가방법)

  • ;;Koichi Goda
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.10-25
    • /
    • 1999
  • A new evaluation method for the interfacial properties of fibrous composites based on a fragmentation technique is proposed by using the gradual multi-fiber composite, in which the inter-fiber spacing is gradually changed. The results showed that as the inter-fiber distance increased, the aspect ratio of broken fibers decreased while the interfacial shear strength between the fiber and matrix increased. When the reciprocal of the inter-fiber destance was taken for the above relations, both the aspect ratio and interfacial shear strength showed a saturated value. This means that the gradual multi-fiber composite indicates an upper bound in aspect ratio and an upper bound in interfacial shear strength. It was concluded that this fragmentation test could be a new method for composite evaluation, since reducing a difference between these two bounds is effective for composite strengthening. In addition an elastoplastic finite element analysis was carried out to relate the above results with fiber stress a distribution around fiber breaks. It was proved that the bound obtained in the gradual multi-fiber composite test is closely related to stress concentrations caused by a group of multi-fiber breaks.

  • PDF

Thermal Conducting Behavior of Composites of Conjugated Short Fibrous-SiC Web with Different Filler Fraction (짧은 섬유상간의 접합을 가진 Silicon Carbide Web 복합재료의 분율별 열전도 거동)

  • Kim, Tae-Eon;Bae, Jin Chul;Cho, Kwang Yeon;Lee, Dong Jin;Shul, Yong-Gun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.549-555
    • /
    • 2012
  • Silicon carbide(SiC) exhibits many unique properties, such as high strength, corrosion resistance, and high temperature stability. In this study, a SiC-fiber web was prepared from polycarbosilane(PCS) solution by employing the electrospinning process. Then, the SiC-fiber web was pyrolyzed at $1800^{\circ}C$ in argon atmosphere after it was subjected to a thermal curing. The SiC-fiber web (ground web)/phenolic resin (resol) composite was fabricated by hot pressing after mixing the SiC-fiber web and the phenolic resin. The SiC-fiber web composition was controlled by changing the fraction of filler (filler/binder = 9:1, 8:2, 7:3, 6:4, 5:5). Thermal conductivity measurement indicates that at the filler content of 60%, the thermal conductivity was highest, at 6.6 W/mK, due to the resulting structure formed by the filler and binder being closed-packed. Finally, the microstructure of the composites of SiC-fiber web/resin was investigated by FE-SEM, EDS, and XRD.