• Title/Summary/Keyword: component model

Search Result 4,181, Processing Time 0.035 seconds

Compressive Creep Behavior of Rice Starch Gels (쌀 전분 젤의 creep 특성)

  • Hong, Seok-In;Kim, Young-Sug;Choi, Dong-Won;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.165-170
    • /
    • 1992
  • The creep behavior of gels made with $30{\sim}45%$ gelatinized rice starch was measured over a wide range of temperature. Compressive creep curves of rice starch gels conformed to a six element mechanical model consisting of one Hookean, two Voigt and one Newtonian component. The creep compliance of gels decreased with increasing starch concentrations. Among viscoelastic constants of the mechanical model, elastic modulus was mainly influenced by the change of starch concentrations. The concentration-invariant compliance curve was obtained by reduction to 38% using reduction parameter $a_{c}$. The creep compliance curves of 45% starch gels increased with temperature, which indicated that rice starch gels became softer and less rigid with increasing temperature. When the compliance at $20^{\circ}C$ was set as a reference curve, creep compliance data for 45% gels at various temperature could be superimposed as a continuous smooth curve. The apparent activation energies of 45% rice starch gels calculated by the modified WLF equation were not intrinsic, but decreased as temperature increased.

  • PDF

Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers (수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가)

  • Sohn, Byonghu;Wi, Jihae;Park, Sangwoo;Lim, Jeehee;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.5-14
    • /
    • 2013
  • Among the various thermal properties, thermal conductivity of soils is one of the most important parameters to design a horizontal ground heat exchanger for ground-coupled heat pump systems. It is well known that the thermal conductivity of soil is strongly influenced by its density and water content because of its particulate structure. This paper evaluates some of the well-known prediction models for the thermal conductivity of particulate media such as soils along with the experimental results. The semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry soils. It comes out that the model developed by Cote and Konrad provides the best overall prediction for unsaturated sands available in the literature. Also, a parametric analysis is conducted to investigate the effect of thermal conductivity, water content and soil type on the horizontal ground heat exchanger design. The results show that a design pipe length for the horizontal ground heat exchanger can be reduced with an increase in soil thermal conductivity. The current research concludes that the dimension of the horizontal ground heat exchanger can be reduced to a certain extent by backfilling materials with a higher thermal conductivity of solid particles.

Prediction of Tcv for Coal Slags under Reducing Condition (환원 조건에서 석탄 슬래그의 Tcv 예측)

  • Park, Yoonkyung;Oh, Myungsook
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.623-630
    • /
    • 2006
  • The slag viscosity is an important factor determining the operation temperature of entrained flow type of gasifiers. The temperature of critical viscosity, $T_{cv}$, for 5 crystalline slags was predicted by empirical models and FactSage equilibrium calculations, and the validity of each method was tested. Two empirical models were employed: one using $T_h$ from the ash fusion test, and the other using the concentrations of 5 major components. The first model using $T_h$ over-predicted $T_{cv}$ by $20{\sim}100^{\circ}C$, while the model based on the slag composition under-predicted $T_{cv}$ by $80{\sim}120^{\circ}C$. In the equlibrium calculations, $T_{cv}$ was obtained from the liquidus temperature. When the 4-major component concentrations were used in the calculation, the predicted temperatures were higher than the observed. The liquidus temperature was very sensitive to the concentrations of minor components, and the addition of MgO and $Na_2O$ lowered the liquidus temperature. The results with 4 major and 3 minor components most closely described experimentally observed $T_{cv}$. In the case that a chromia refractory was used, it was shown that $Cr_2O_3$ concentration in the slag also needs to be included for more accurate prediction of $T_{cv}$.

Implementation of a Network Simulator for Cyber Attacks and Detections based on SSFNet (SSFNet 기반 사이버 공격 및 탐지를 위한 네트워크 시뮬레이터의 구현)

  • Shim, Jae-Hong;Jung, Hong-Ki;Lee, Cheol-Won;Choi, Kyung-Hee;Park, Seung-Kyu;Jung, Gi-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.457-467
    • /
    • 2002
  • In order to simulate cyber attacks and predict network behavior by attacks, we should represent attributes of network components in the simulation model, and should express characteristics of systems that carry out various cyber attacks and defend from these attacks. To simulate how network load may change under the cyber attacks, we extended SSF[9, 10] that is process-based event-oriented simulation system. We added a firewall class and a packet manipulator into the SSFNet that is a component of SSF. The firewall class, which is related to the security, is to simulate cyber attacks, and the packet manipulator is a set of functions to write attack programs for the simulation. The extended SSFNet enables to simulate a network with the security systems and provides advantages that make easy to port already exsiting attack programs and apply them to the simulation evironment. We made a vitual network model to verify operations of the added classes, and simulated a smurf attack that is a representative denial of sevive attack, and observed the network behavior under the smurf attack. The results showed that the firewall class and packet manipulator developed in this paper worked normaly.

Design and Implementation of Co-Verification Environments based-on SystemVerilog & SystemC (SystemVerilog와 SystemC 기반의 통합검증환경 설계 및 구현)

  • You, Myoung-Keun;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • The flow of a universal system-level design methodology consists of system specification, system-level hardware/software partitioning, co-design, co-verification using virtual or physical prototype, and system integration. In this paper, verification environments based-on SystemVerilog and SystemC, one is native-code co-verification environment which makes prompt functional verification possible and another is SystemVerilog layered testbench which makes clock-level verification possible, are implemented. In native-code co-verification, HW and SW parts of SoC are respectively designed with SystemVerilog and SystemC after HW/SW partitioning using SystemC, then the functional interaction between HW and SW parts is carried out as one simulation process. SystemVerilog layered testbench is a verification environment including corner case test of DUT through the randomly generated test-vector. We adopt SystemC to design a component of verification environment which has multiple inheritance, and we combine SystemC design unit with the SystemVerilog layered testbench using SystemVerilog DPI and ModelSim macro. As multiple inheritance is useful for creating class types that combine the properties of two or more class types, the design of verification environment adopting SystemC in this paper can increase the code reusability.

  • PDF

Optimum Allocation Modelling of Rural Facilities by Decision-Making Technique - With Special Reference to Agricultural-cum-Industrial Complex- (의사결정기법을 이용한 농촌지역시설 적정입지선정 모델 - 농공단지를 중심으로 -)

  • Choe, Su-Myeong;Kim, Yeong-Ju;Hwang, Han-Cheol
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.1
    • /
    • pp.98-107
    • /
    • 1998
  • For efficient development of rural facilities, choice of their optimum locations would be an important issue, however, existing research works concentrated much more an allocation policy of urban industrial complex and public facilities than rural ones. In this study, because agricultural-cum-industrial complex has been the most widely developed representative one of rural facilities, it was selected as a case study facility. As a pre-study to system development, existing governmental location-decision system was checked and interviewing survey carried out to find out on-spot problems. And, being based on literature review and survey analysis results, 4-step optimum locational decision model was developed , formulation of locational goal system, ranking tabulation on components, determination of significance values of components, calculation of component scores. Finally, through the case study works on 3 sites, system applicability was checked, Considering together the simplicity problem of existing guidelines and the interviewing survey results favoring the diversified viewpoints, it would be necessary to develop multifaceted support system for locational decision making. 3-tier classification steps from the higher, middle to lower one were used and their underpinning viewpoints were sorted as on regional development, entrepreneurship, spatial rationality, from which a tentative locational goal system was formulated. Through the expert group checking, final locational goal system was determined having 3 of the higher classification items, 7 of the middle ones, 23 of the lower ogles. For ranking tabulation, 3 types of ranking criteria were arranged which were based on statistical analysis using mean and standard deviation(Type I ), its existence or not 1 good or not(Type E ), and the others(Type E ). From the significance evaluation results, regional development and entrepreneurship aspects were valued much higher than spatial rationality aspect. And, in the middle step, items as spread effects of regional economy, accessibility and social potentialities were highly valued while infrastructural development level and natural condition being low. The application results of the system to 3 case study total. However, the detailed ones differed among study the influencing effects on regional economy, and contrast greater the infrastructural development level. Conclusively, final evaluation values well represented the characteristics of each area. If this system be complemented and applied comprehensively by the successive studies, it would be developed to a general model of locational decision supporting system for rural facilities.

  • PDF

Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis (배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.114-123
    • /
    • 2015
  • Plants can respond and adapt to cold stress through regulation of gene expression in various biochemical and physiological processes. Cold stress triggers decreased rates of metabolism, modification of cell walls, and loss of membrane function. Hence, this study was conducted to construct coexpression networks for time-based expression pattern analysis of genes related to cold stress in Chinese cabbage (Brassica rapa ssp. pekinensis). B. rapa cold stress networks were constructed with 2,030 nodes, 20,235 edges, and 34 connected components. The analysis suggests that similar genes responding to cold stress may also regulate development of Chinese cabbage. Using this network model, it is surmised that cold tolerance is strongly related to activation of chitinase antifreeze proteins by WRKY transcription factors and salicylic acid signaling, and to regulation of stomatal movement and starch metabolic processes for systemic acquired resistance in Chinese cabbage. Moreover, within 48 h, cold stress triggered transition from vegetative to reproductive phase and meristematic phase transition. In this study, we demonstrated that this network model could be used to precisely predict the functions of cold resistance genes in Chinese cabbage.

Development and Application of Cognitive Scaffolding Tools for Enhancing the Integrated Science Process Skills of High School Students (고등학생들의 통합 탐구 기능 향상을 위한 인지적 스캐폴딩 도구 개발 및 적용)

  • Lee, Kiyoung;Heo, Junhyuk;Park, Jaeyong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.545-562
    • /
    • 2019
  • The purpose of this study is to develop cognitive scaffolding tools and to explore their effects on integrated science process skills of high school students. For this purpose, we developed cognitive scaffolding tools including one kind of classroom instruction for training integrated process skills and two kinds of individual learning materials that students can selectively study according to their level of inquiry ability. In addition, we developed hypothetico-deductive inquiry tasks as a tool to investigate the level of students on the integrated process skills for pre-test and post-test respectively. In order to verify the effectiveness of the cognitive scaffolding tools, we conducted inferential statistics on the pre-and post-tests of the experimental group and control group to examine statistical significance of students' inquiry level change depending on the usage of the cognitive scaffolding tools. We also produced Wrightmaps based on Rasch model to compare the change of inquiry ability depending on usage of the cognitive scaffolding tools. As a result, the experimental group using the cognitive scaffolding tools showed a significantly higher scores in all the components of integrated process skills namely, designing inquiry, collecting data, analyzing data, and forming conclusion than the control group. In addition, students who used cognitive scaffolding tools improved their inquiry ability and showed a distinct transition to higher level in each component of the integrated process skills. The results of this study suggest that high school students need cognitive scaffolding to alleviate or eliminate the functional barriers they face in conducting scientific inquiries.

The Effect of Socially-Prescribed Perfectionism of College Students to Depression: Testing the Mediation effect of Intolerance of Uncertainty and Unconditional Self Acceptance (대학생의 사회부과적 완벽주의가 우울에 미치는 영향: 불확실성에 대한 인내력 부족과 무조건적 자기수용의 매개효과를 중심으로)

  • Choi, Jea-Gwang;Song, Wonyoung
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.3
    • /
    • pp.183-191
    • /
    • 2018
  • This study is to examine the effects of Socially Prescribed Perfectionism on depression by Intolerance of Uncertainty and Unconditional Self Acceptance, and to well being to improve the positive life of college students. This study is conducted on 238 college students who are influenced by Socially Prescribed Perfectionism, Intolerance of Uncertainty, Unconditional Self Acceptance, and Depression. This study analyzed a questionnaire consisted of a sub-component of the Multidimensional Perfectionism Scale (MPS), a Intolerance of Uncertainty Scale(IUS), an Unconditional Self Acceptance Questionnaire-R(USAQ-R), and a depression scale (CES-D) and verified correlation analysis and structural equation model. The results of this study showed that socially prescribed perfectionism had significant negative correlations with intolerance of uncertainty, and had significant positive correlation with unconditional self acceptance. The results of the structural equation model showed full mediating effect of the intolerance of uncertainty and unconditional self acceptance between Socially prescribed perfectionism and depression, Finally, implications and suggestions are suggested in this study.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.