DOI QR코드

DOI QR Code

Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis

배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석

  • Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 이기호 (경희대학교 생명과학대학 원예생명공학과) ;
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2014.04.02
  • Accepted : 2014.06.08
  • Published : 2015.02.28

Abstract

Plants can respond and adapt to cold stress through regulation of gene expression in various biochemical and physiological processes. Cold stress triggers decreased rates of metabolism, modification of cell walls, and loss of membrane function. Hence, this study was conducted to construct coexpression networks for time-based expression pattern analysis of genes related to cold stress in Chinese cabbage (Brassica rapa ssp. pekinensis). B. rapa cold stress networks were constructed with 2,030 nodes, 20,235 edges, and 34 connected components. The analysis suggests that similar genes responding to cold stress may also regulate development of Chinese cabbage. Using this network model, it is surmised that cold tolerance is strongly related to activation of chitinase antifreeze proteins by WRKY transcription factors and salicylic acid signaling, and to regulation of stomatal movement and starch metabolic processes for systemic acquired resistance in Chinese cabbage. Moreover, within 48 h, cold stress triggered transition from vegetative to reproductive phase and meristematic phase transition. In this study, we demonstrated that this network model could be used to precisely predict the functions of cold resistance genes in Chinese cabbage.

식물은 다양한 생화학적 및 생리적 과정에 속한 유전자들의 발현 수준을 조절함으로써 저온 스트레스에 반응 및 적응을 할 수 있다. 이러한 스트레스 환경은 막 기능 손실, 세포벽의 변화, 대사 속도 변화 등과 같이 부정적인 영향을 초래한다. 따라서 본 연구는 배추(Brassica rapa ssp. pekinensis)에서의 시간 변화에 따른 저온 스트레스 반응 기작 관련 유전자 상호발현 네트워크를 구축하였다. 배추의 저온 스트레스 네트워크는 2,030개 node, 20,235개 edge, 및 34개 connected component로 구성되었으며, 구축된 네트워크는 배추에서 저온에 관여하는 유전자가 생육도 조절한다는 것을 보여 주었다. 구축한 네트워크를 이용하여 배추에서 저온 스트레스($4^{\circ}C$) 처리가 미치는 영향을 분석한 결과 WRKY 전사인자와 살리실산 신호에 의해 chitinase 부동 단백질이 활성화되고, 전신적 획득저항성을 작동하기 위해 기공 개폐 및 탄수화물 대사과정이 조절됨을 확인하였다. 또한 저온 처리 후 48시간 후에 저온 스트레스가 영양생장에서 생식 생장 및 분열 조직 단계의 변화를 초래하는 것으로 나타났다. 본 연구에서 구축한 네트워크 모델은 배추에서 저온 저항성 관련 유전자들의 발현 패턴을 정확히 유추하는 데 이용될 수 있을 것이다.

Keywords

References

  1. Alonso-Blanco, C., M.G. Aarts, L. Bentsink, J.J. Keurentjes, M. Reymond, D. Vreugdenhil, and M. Koornneef. 2009. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877-1896. https://doi.org/10.1105/tpc.109.068114
  2. Ananga, A.O., E. Cebert, J.W. Ochieng, S. Kumar, D. Kambiranda, H. Vasanthaiah, V. Tsolova, Z. Senwo, K. Konan, and F.N. Anike. 2012. Prospects for transgenic and molecular breeding for cold tolerance in canola (Brassica napus L.), p. 1-32. In: U.G. Akpan (ed.). Oilseeds. InTech Press, Rijeka, Hrv.
  3. Barah, P., N.D. Jayavelu, S. Rasmussen, H.B. Nielsen, J. Mundy, and A.M. Bones. 2013. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 14:722. https://doi.org/10.1186/1471-2164-14-722
  4. Barnes, J. and P. Hut. 1986. A hierarchical O (N log N) forcecalculation algorithm. Nature 324:446-449. https://doi.org/10.1038/324446a0
  5. Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.H. Fridman, F. Pages, Z. Trajanoski, and J. Galon. 2009. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093. https://doi.org/10.1093/bioinformatics/btp101
  6. Brassica rapa Genome Sequencing Project Consortium. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1039. https://doi.org/10.1038/ng.919
  7. Chawade, A., M. Brautigam, A. Lindlöf, O. Olsson, and B. Olsson. 2007. Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA coexpression patterns, promoter motifs and transcription factors. BMC Genomics 8:304. https://doi.org/10.1186/1471-2164-8-304
  8. Chinnusamy, V., J. Zhu, and J.K. Zhu. 2007. Cold stress regulation of gene expression in plants. Trends Plant Sci. 12:444-451. https://doi.org/10.1016/j.tplants.2007.07.002
  9. Cho, H.Y., S.G. Hwang, D.S. Kim, and C.S Jang. 2012. Genomewide transcriptome analysis of rice genes responsive to chilling stress. Can. J. Plant Sci. 92:447-460. https://doi.org/10.4141/cjps2011-165
  10. Ding, C.K., C.Y. Wang, K.C. Gross, and D.L. Smith. 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895-901. https://doi.org/10.1007/s00425-001-0698-9
  11. Eulgem, T., P.J. Rushton, S. Robatzek, and I.E. Somssich. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206. https://doi.org/10.1016/S1360-1385(00)01600-9
  12. Fujimoto, S.Y., M. Ohta, A. Usui, H. Shinshi, and M. Ohme-Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393-404. https://doi.org/10.1105/tpc.12.3.393
  13. Grene, R., C. Klumas, H. Suren, K. Yang, E. Collakova, E. Myers, L.S. Heath, and J.A. Holliday. 2012. Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis). Front. Plant Sci. 3:241.
  14. Griffith, M., P. Ala, D.S. Yang, W.C. Hon, and B.A. Moffatt. 1992. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol. 100:593-596. https://doi.org/10.1104/pp.100.2.593
  15. Hara, M., K. Oki, K. Hoshino, and T. Kuboi. 2004. Effects of sucrose on anthocyanin production in hypocotyl of two radish (Raphanus sativus) varieties. Plant Biotechnol. 21:401-405. https://doi.org/10.5511/plantbiotechnology.21.401
  16. He, Y. and R.M. Amasino. 2005. Role of chromatin modification in flowering-time control. Trends Plant Sci. 10:30-35.
  17. Hirose, T., N. Aoki, Y. Harada, M. Okamura, Y. Hashida, R. Ohsugi, M. Akio, H. Hirochika, and T. Terao. 2013. Disruption of a rice gene for ${\alpha}$-glucan water dikinase, OsGWD1, leads to hyperaccumulation of starch in leaves but exhibits limited effects on growth. Front. Plant Sci. 4:147.
  18. Hon, W.C., M. Griffith, P. Chong, and D. Yang. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 104:971-980.
  19. Hua, Y.J., G.L. Yuan, Y. Man, Q.X. Hua, and Z.M. Fang. 2008. Salicylic acid induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon. Sci. Hortic. 118:200-205. https://doi.org/10.1016/j.scienta.2008.06.015
  20. Huang, D.W., B.T. Sherman, and R.A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44-57.
  21. Janska, A., P. Marsik, S. Zelenkova, and J. Ovesna. 2010. Cold stress and acclimation - What is important for metabolic adjustment? Plant Biol. 12:395-405. https://doi.org/10.1111/j.1438-8677.2009.00299.x
  22. Kamata, T. and M. Uemura. 2004. Solute accumulation in heat seedlings during cold acclimation: Contribution to increased freezing tolerance. Cryo. Letters 5:311-322.
  23. Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic. Acids Res. 40:D109-114. https://doi.org/10.1093/nar/gkr988
  24. Kang, H.M. and M.E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant. 115:571-576. https://doi.org/10.1034/j.1399-3054.2002.1150411.x
  25. Kim, J.S., H.J. Jung, H.J. Lee, K.A. Kim, C.H. Goh, Y. Woo, S.H. Oh, Y.S. Han, and H. Kang. 2008. Glycine-rich RNAbinding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55:455-466. https://doi.org/10.1111/j.1365-313X.2008.03518.x
  26. Korn, M., S. Peterek, H.P. Mock, A.G. Heyer, and D.K. Hincha. 2008. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ. 31:813-827. https://doi.org/10.1111/j.1365-3040.2008.01800.x
  27. Kreps, J.A., Y. Wu, H.S. Chang, T. Zhu, X. Wang, and J.F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130:2129-2141. https://doi.org/10.1104/pp.008532
  28. Kunkel, B.N. and D.M. Brooks. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
  29. Lee, B.H., H. Lee, L. Xiong, and J.K. Zhu. 2002. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235-1251. https://doi.org/10.1105/tpc.010433
  30. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.
  31. Leyva, A., J.A. Jarillo, J. Salinas, and J.M. Martinez-Zapater. 1995. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol. 108:39-46.
  32. Luan, S. 2002. Signaling drought in guard cells. Plant Cell Environ. 25:229-237. https://doi.org/10.1046/j.1365-3040.2002.00758.x
  33. Maruyama, K., M. Takeda, S. Kidokoro, K. Yamada, Y. Sakuma, K. Urano, M. Fujita, K. Yoshiwara, S. Matsukura, Y. Morishita, R. Sasaki, H. Suzuki, K. Saito, D. Shibata, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2009. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol. 150:1972-1980. https://doi.org/10.1104/pp.109.135327
  34. Naika, M., K. Shameer, and R. Sowdhamini. 2013. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics. Mol. Biosyst. 9:1888-1908. https://doi.org/10.1039/c3mb70072k
  35. Penfield, S. 2008. Temperature perception and signal transduction in plants. New Phytol. 179:615-628. https://doi.org/10.1111/j.1469-8137.2008.02478.x
  36. Pihakaski-Maunsbach, K., B. Moffatt, P. Testillano, M. Risueno, S. Yeh, M. Griffith, and A.B. Maunsbach. 2001. Genes encoding chitinase-antifreeze proteins are regulated by cold and expressed by all cell types in winter rye shoots. Physiol. Plant. 112:359-371. https://doi.org/10.1034/j.1399-3054.2001.1120309.x
  37. Rapala-Kozik, M., N. Wolak, M. Kujda, and A.K. Banas. 2012. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol. 12:2. https://doi.org/10.1186/1471-2229-12-2
  38. Rural Development Administration (RDA). 2008. BrEMD: The Brassica rapa EST and microarray database. http://www.brassicarapa.org/BrEMD.
  39. Renaut, J., J.F. Hausman, and M.E. Wisniewski. 2006. Proteomics and low temperature studies: Bridging the gap between gene expression and metabolism. Physiol. Plant. 126:97-109. https://doi.org/10.1111/j.1399-3054.2006.00617.x
  40. Rossini, S., A.P. Casazza, E.C. Engelmann, M. Havaux, R.C. Jennings, and C. Soave. 2006. Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. Plant Physiol. 141:1264-1273. https://doi.org/10.1104/pp.106.083055
  41. Sanghera, G.S., S.H. Wani, W. Hussain, and N.B. Singh. 2011. Engineering cold stress tolerance in crop plants. Curr. Genomics 12:30-43. https://doi.org/10.2174/138920211794520178
  42. Scott, I.M., S.M. Clarke, J.E. Wood, and L. Mur. 2004. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol. 135:1040-1049. https://doi.org/10.1104/pp.104.041293
  43. Smoot, M.E., K. Ono, J. Ruscheinski, P.L. Wang, and T. Ideker. 2011. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 27:431-432. https://doi.org/10.1093/bioinformatics/btq675
  44. Tasgin, E., O. Atici, and B. Nalbantoglu. 2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul. 41:231-236. https://doi.org/10.1023/B:GROW.0000007504.41476.c2
  45. Valledor, L., T. Furuhashi, A.M. Hanak, and W. Weckwerth. 2013. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell Proteomics 12:2032-2047. https://doi.org/10.1074/mcp.M112.026765
  46. Yano, R., M. Nakamura, T. Yoneyama, and I. Nishida. 2005. Starch-related alpha-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol. 138:837-846. https://doi.org/10.1104/pp.104.056374
  47. Yeh, S., B.A. Moffatt, M. Griffith, F. Xiong, D.S. Yang, S.B. Wiseman, F. Sarhan, J. Danyluk, Y.Q. Xue, C.L. Hew, A. Doherty-Kirby, and G. Lajoie. 2000. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124:1251-1264. https://doi.org/10.1104/pp.124.3.1251
  48. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267-275. https://doi.org/10.1007/s10059-010-0013-3
  49. Yu, X.M., M. Griffith, and S.B. Wiseman. 2001. Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol. 126: 1232-1240. https://doi.org/10.1104/pp.126.3.1232
  50. Zhao, J.J., X.W. Wang, B. Deng, P. Lou, J. Wu, R.F. Sun, Z.Y. Xu, J. Vromans, M. Koornneef, and G. Bonnema. 2005. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor. Appl. Genet. 110:1301-1314. https://doi.org/10.1007/s00122-005-1967-y
  51. Zhao, Z. and S.M. Assmann. 2011. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J. Exp. Bot. 62:5179-5189. https://doi.org/10.1093/jxb/err223
  52. Zhao, Z., L. Tan, C. Dang, H. Zhang, Q. Wu, and L. An. 2012. Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biol. 12:222. https://doi.org/10.1186/1471-2229-12-222
  53. Zhou, D., J. Zhou, L. Meng, Q. Wang, H. Xie, Y. Guan, Z. Ma, Y. Zhong, F. Chen, and J. Liu. 2009. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene 441:36-44. https://doi.org/10.1016/j.gene.2008.06.024

Cited by

  1. Transcriptomic analysis of ‘Campbell Early’ and ‘Muscat Bailey A’ grapevine shoots exposed to freezing cold stress vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.204
  2. 살리실 산 처리가 딸기 생육과 과실 품질에 미치는 영향 vol.52, pp.5, 2015, https://doi.org/10.14397/jals.2018.52.5.11