DOI QR코드

DOI QR Code

Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers

수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가

  • Sohn, Byonghu (Green Building Research Division, Korea Institute of Construction Technology) ;
  • Wi, Jihae (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Park, Sangwoo (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lim, Jeehee (School of Civil Engrg., Purdue Univ.) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 손병후 (한국건설기술연구원 그린빌딩연구실) ;
  • 위지혜 (고려대학교 건축사회환경공학부) ;
  • 박상우 (고려대학교 건축사회환경공학부) ;
  • 임지희 ((미)퍼튜대학교 토목공학과) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2011.12.16
  • Accepted : 2012.12.15
  • Published : 2013.02.28

Abstract

Among the various thermal properties, thermal conductivity of soils is one of the most important parameters to design a horizontal ground heat exchanger for ground-coupled heat pump systems. It is well known that the thermal conductivity of soil is strongly influenced by its density and water content because of its particulate structure. This paper evaluates some of the well-known prediction models for the thermal conductivity of particulate media such as soils along with the experimental results. The semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry soils. It comes out that the model developed by Cote and Konrad provides the best overall prediction for unsaturated sands available in the literature. Also, a parametric analysis is conducted to investigate the effect of thermal conductivity, water content and soil type on the horizontal ground heat exchanger design. The results show that a design pipe length for the horizontal ground heat exchanger can be reduced with an increase in soil thermal conductivity. The current research concludes that the dimension of the horizontal ground heat exchanger can be reduced to a certain extent by backfilling materials with a higher thermal conductivity of solid particles.

지중 토양의 열 물리적 성질 중 열전도도(thermal conductivity)는 지열 히트펌프 시스템(ground-coupled heat pump systems)의 지중열교환기 설계 과정에서 매우 중요한 변수다. 토양의 열전도도는 3상 구조로 인해 함수비와 건조밀도의 영향을 많이 받는다. 본 논문에서는 수평형 지중열교환기의 트렌치 뒤채움재로 사용되는 9종류의 토양(모래-물혼합물)을 대상으로 열전도도 측정결과와 기존 상관식에 의한 계산결과를 비교하였다. 건조토인 경우, 2상 구조의 열전도도 예측모델인 준이론 모델에 의한 열전도도 계산 결과는 측정 결과와 큰 차이를 보였다. 불포화토인 경우, 기존 모델 중 Cote와 Konrad가 제시한 모델에 의한 계산 결과가 측정 결과와 가장 잘 일치하였다. 또한 토양의 열전도도와 함수비, 종류 등이 수평형 지중열교환기의 설계 길이에 미치는 영향을 고찰하였다. 뒤채움재로 사용되는 토양의 열전도도가 증가할수록 수평형 지중열 교환기의 설계 길이는 감소하였다.

Keywords

References

  1. Gil, H., Lee, K., Lee, C., and Choi, H. (2009), "Numerical Evaluation on Thermal Performance and Sectional Efficiency of Closed-loop Vertical Ground Heat Exchanger", Journal of Korean Geotechnical Society (KGS), Vol.25, No.3, pp.57-64.
  2. Park, M., Wi, j., Lee, C., Choi, H., and Kang, S-H (2010), "Study on Cement-based Grout for Closed-loop Vertical Ground Heat Exchanger", Journal of Korean Geotechnical Society (KGS), Vol.26, No.7, pp.107-115.
  3. Sohn, B. (2007), "Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.19, No.7, pp.512-520.
  4. Sohn, B. (2008), "Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol.20, No.5, pp.342-350.
  5. Choi, H., Lee, C., Choi, H-B., and Woo, S-B (2008), "A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger", Journal of Korean Geotechnical Society (KGS), Vol.24, No.1, pp.37-49.
  6. Benli, H. and Durmus, A. (2009), "Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating", Energy and Buildings, Vol.41, pp.220-228. https://doi.org/10.1016/j.enbuild.2008.09.004
  7. Cote, J. and Konrad, J. M. (2005), "A generalized thermal conductivity model for soils and construction materials", Canadian Geotechnical Journal, Vol.42, pp.443-458. https://doi.org/10.1139/t04-106
  8. Esen, H., Inalli, M., Esen, M., and Pihtili, K. (2007), "Energy and exergy analysis of a ground-coupled heat pump systems with two horizontal ground heat exchanger", Building and Environment, Vol.42, pp.3606-3615. https://doi.org/10.1016/j.buildenv.2006.10.014
  9. Farouki, O. T. (1982), Evaluation of methods for calculating soil thermal conductivity, CRREL Report 82-8, US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH, USA.
  10. Johansen, O. (1975), Thermal Conductivity of Soils, Ph.D. thesis, University of Trondheim, Trondheim, Norway. (CRREL Draft English Translation 637, US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH, US)
  11. Kavanaugh, S. P. and Rafferty, K. (1997), Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings, American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), Atlanta, US.
  12. Kersten, M. S. (1949), Laboratory research for the determination of the thermal properties of soil, Research Laboratory Investigations, Engineering Experiment Station, Technical Report 23, University of Minnesota, Minneapolis, US.
  13. Lu, S., Ren, T., Gong Y., and Horton, R. (2007), "An improved model for predicting soil thermal conductivity form water content at room temperature", Soil Science Society of America Journal, Vol.71, pp.8-14. https://doi.org/10.2136/sssaj2006.0041
  14. Tarnawski, V. R., Leong, W. H., Momose, T., and Hamada, Y. (2009), "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan", Renewable Energy, Vol.34, pp.127-134. https://doi.org/10.1016/j.renene.2008.03.026
  15. Wang, J., Carson, J. K., North, M. K., and Cleland, D. J. (2006), "A new approach to modelling the effective thermal conductivity of heterogeneous materials", International Journal of Heat and Mass Transfer, Vol.49, pp.3075-3083. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007

Cited by

  1. Analysis of Construction Cost and Influence Factors on Horizontal Ground Heat Exchangers vol.10, pp.3, 2014, https://doi.org/10.7849/ksnre.2014.10.3.006
  2. 피치 간격에 따른 수평 슬링키형과 코일형 지중 열교환기의 열효율 평가 vol.30, pp.7, 2014, https://doi.org/10.7843/kgs.2014.30.7.55
  3. 태양열 집열관 과열방지를 위한 지중열교환기 연구 vol.17, pp.7, 2016, https://doi.org/10.5762/kais.2016.17.7.616
  4. 진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가 vol.37, pp.8, 2013, https://doi.org/10.7843/kgs.2021.37.8.51