• Title/Summary/Keyword: complex potential theory

Search Result 72, Processing Time 0.022 seconds

Trajectory Planning of Multi Agent Robots for Robot Soccer Using Complex Potential (복소 포텐셜을 이용한 로봇 축구용 다개체 로봇의 경로 계획)

  • Lee, Kyunghee;Kim, Donghan;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper deals with the trajectory planning of multi agent robots using complex potential theory for robot soccer. The complex potential theory is introduced, then the circle theorem is used to avoid obstacles, and the vortex pair is used to make precise kicking direction of robot. Various situations of robot soccer are simulated and the effect of vortex strength and the speed of robots are discussed and the better way to avoid obstacles and to kick the precise direction is found. The feasibilities of complex potential theory to apply for the multi agent robots are successful.

Enhancement of Complex Potential Navigation Method for Obstacle Avoidance of Mobile Robot (이동로봇의 장애물 회피를 위한 복소 포텐셜 항법의 개선)

  • Kim, Dong-Han;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.385-389
    • /
    • 2009
  • This paper deals with the enhancement of the complex potential navigation for wheeled mobile robots. The circle theorem from complex function theory is used to avoid an obstacle, and the enhancement to avoid multiple obstacles is proposed. The limit cycle navigation can be combined for robot to kick the ball to the intentioned direction. Avoiding step and superposing twin vortices can be applied to adjust the direction of robot's trajectory. The proposed method is verified through a set of simulation works, and the feasibilities for the enhancement of complex potential theory are successful.

Weight Function Theory for Piezoelectric Materials with a Crack (균열을 가진 압전재료에서의 가중함수이론)

  • 손인호;안득만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.208-216
    • /
    • 2003
  • In this paper, a two-dimensional electroelastic analysis is performed on a piezoelectric material with an open crack. The approach of Lekhnitskii's complex potential functions is used in the derivation and Bueckner's weight function theory is extended to piezoelectric materials. The stress intensity factors and the electric displacement intensity factor are calculated by the weight function theory.

Research On Technical Writing Educational Methods Based On Complex Learning Systems (학습복잡계 기반의 공학적 글쓰기 교수 방법 연구)

  • Kim, Hae-Kyung;Kim, Cha-Jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1521-1528
    • /
    • 2010
  • This paper examines technical writing and teaching methods based on the perspectives of the complex learning system theory. So, the paper first discusses the constituent elements and characteristics of the complex learning system theory and continues to examine the potential of applying the complex learning system theory to new teaching methods. As a result, not only did the research expand the approach methods of providing technical writing education but also confirmed the potential of actual implementation. Such results will provide a leeway to start applying new teaching methods for technical writing education. Furthermore, the paper proposes more detailed case studies related to this topic as well as development of this research to produce textbooks and other higher level researches.

Multiconfiguration Molecular Mechanics Studies for the Potential Energy Surfaces of the Excited State Double Proton Transfer in the 1:1 7-Azaindole:H2O Complex

  • Han, Jeong-A;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.365-371
    • /
    • 2010
  • The multiconfiguration molecular mechanics (MCMM) algorithm was used to generate potential and vibrationally adiabatic energy surfaces for excited-state tautomerization in the 1:1 7-azaindole:$H_2O$ complex. Electronic structures and energies for reactant, product, transition state were computed at the CIS/6-31G(d,p) level of theory. The potential and vibrationally adiabatic energies along the reaction coordinate were generated step by step by using 16 high-level Shepard points, which were computed at the CIS/6-31G(d,p) level. This study shows that the MCMM method was applied successfully to make quite reasonable potential and adiabatic energy curves for the excited-state double proton transfer reaction. No stable intermediates are present in the potential energy curve along the reaction coordinate of the excited-state double proton transfer in the 1:1 7-azaindole:$H_2O$ complex, indicating that these two protons are transferred concertedly. The change in the bond distances along the reaction coordinate shows that two protons move very asynchronously to make an $H_3O^+$-like moiety at the transition state.

Numerical Models for Atmospheric Diffusion Phenomena by Pseudospectral Method(2) : Spectral Model for a Hilly Terrain of Real Scale (의사스펙트로법에 의한 대기확산현상의 수치모델(2): 실규모의 복잡지형에서의 스펙트로모델)

  • 김선태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.242-246
    • /
    • 1993
  • Theoretically, spectral method has the highest accuracy among present numerical methods, but it is generally difficult to apply to complex terrains because of complex boundary conditions. Recently, spectral-element method, basically divide the domain into a set of rectangular subdomain and solve the equation at each subdomain, has been introduced. However, boundary conditions become more complex and requires more computing time, thus spectral-element method is not powerful for all complex terrain problems. In this paper, potential flow theory was intorduced to solve the air flows and diffusion phenomenon in the presence of terrain obstacles. Using the velocity potential-stream line orthogonal coordinate space, the diffusion problems of hilly terrain by pseudospectral method were solved and compared those with no terrain real scale solutions.

  • PDF

Weight Function Theory for Piezoelectric Materials with Crack in Anti-Plane Deformation (균열을 가진 압전재료에 대한 면외 변형에서의 가중함수이론)

  • Son, In-Ho;An, Deuk-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • In this paper, an electroelastic analysis is performed on a piezoelectric material with an open crack in anti-plane deformation. Bueckner’s weight function theory is extended to piezoelectric materials in anti-plane deformation. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

A Numerical Study on 2-Dimensuional Tank with Shallow Draft (천수에서 2차원 수치파 수조에 대한 계산)

  • 임춘규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • A numerical analysis for wave motion in the shallow water is presented. The method is based on potential theory. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed common boundary to a linear solution in outer domain. In two-dimensional problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary.

  • PDF

Quantum Mechanical Study of van der Waals Complex. Ⅰ.The $H^2$ Dimer Using the DFT and the Multi-Coefficient G2/G3 Methods

  • Kim, Chang Sin;Kim, Sang Jun;Lee, Yong Sik;Kim, Yong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.510-514
    • /
    • 2000
  • Molecular hydrogen dimer, ($H_2)_2$ is a weakly bound van der Waals complex. The configuration of two hydrogen molecules and the potential well structure of the dimer have been the subjects of various studies among chemists and astrophysicists. In this study, we used DFT, MCG2, and MCG3 methods to determine the structure and energy of the molecular hydrogen dimer. We compared the results with previously reported ab initio method results. The ab initio results were also recalculated for comparison. All optimized geometries obtained from the MP2 and DFT methods are T-shaped. The H-H bond lengths for the dimer are almost the same as those of monomer. The center-to-center distance depeds on the levels of theory and the size of the basis sets. The bond lengths of the $H_2$ molecule from the MCG2 and MCG3 methods are shown to be in excellent agreement with the experimental value. The geometry of optimized dimer is T-shaped, and the well depths for the dimerization potential are very small, being 23 $cm-^1$ and 27 $cm-^1$ at the MCG2 and MCG3 levels, respectively. In general the MP2 level of theory predicts stronger van der Waals than the DFT, and agrees better with the MCG2 and MCG3 theories.

A Theoretical Study on the Dispersion of Elastic Waves in Particulate Composites (입자복합재료 내부의 탄성파 분산에 관한 이론적 연구)

  • 김진연;이정권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1697-1704
    • /
    • 1994
  • Elastic wave propagation in discrete random medium studies to predict dynamic effective properties of composite materials containing spherical inclusions. A self-consistent method is proposed which is analogous to the well-known coherent potential approximation. Three conditions that must be satisfied by two effective elastic moduli and effective density are derived for the time without limit of frequency. The derived self-consistency conditions have the physical meaning that the scattering of coherent wave by the constituents in effective medium is vanished on the average. The frequency-dependent complex effective wave speed and coherent attenuation can be obtained by solving the derived self-consistency conditions numerically. The wave speed and attenuation obtained from present theory are shown to be in the better agreements with previous experimental observations than the previous theory.