• Title/Summary/Keyword: complex polymer

Search Result 617, Processing Time 0.026 seconds

Removal of Color and non-biodegradable organic matter from biologically treated effluent by coagulation. (응집에 의한 생물학적 처리수의 색도 및 난분해성 유기물 제거)

  • Seo, Tae-Gyeong;Park, Sang-Min;Park, No-Baek;Jeon, Hang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.859-863
    • /
    • 2008
  • 축산폐수, 침출수 등의 고농도 폐수를 생물학적으로 처리할 경우 최종 방류수는 강한 색도를 띠며 고분자량의 유기물질을 다량 함유한다. 이는 생물학적으로 분해하기 어려운 유기성 복합체와 생화학적 반응에 의한 중간생성물로 색도를 띠는 천연유기물질(NOM)을 포함한다. 생물학적 처리수의 색도는 심미적인 불안감, 방류수역의 수질오염 및 공중보건상의 잠재적 위해성을 갖는다. 또한, 수자원 이용측면에서 정수처리공정에서의 약품투입량 증가와 특히, 소독부산물 생성이라는 잠재적 문제점이 뒤따른다. 따라서 이러한 문제점을 해소하기 위한 생물학적 2차 처리수의 후속처리가 요구되며, 실제로 난분해성 유기물과 색도를 제거하기 위한 흡착, 막 분리, 고급산화(AOP) 및 화학적 응집 등의 물리-화학적 공정에 대한 연구가 수행되어왔다. 특히, 화학적 응집은 무기응집제 또는 고분자중합체(Polymer)를 이용하여 콜로이드성 입자와 색도를 띠는 난분해성 유기물을 전기적 불안정화를 유도함으로서 흡착 및 응집과정을 통해 제거하는 공정으로 많은 연구자들에 의해 연구되어왔다. 그러나 난분해성 유기물과 색도제거는 대상원수의 성상과 화학적 특성 등에 따라 각각의 제거효율과 최적 운전조건이 상이하게 나타난다. 화학적 응집공정은 비교적 높은 제거효율을 보이지만, 운전 및 유지관리의 기술적 어려움, 경제적 비효율성 등으로 인하여 적용에 어려움을 겪고 있는 실정이다. 본 논문에서는 생물학적 혐기-호기성 공정에서 방류되는 축산폐수의 2차 처리수를 대상으로 화학적 응집에 의한 색도 및 난분해성 유기물의 제거거동을 고찰하였다. 대상 처리수의 $TCOD_{Cr}$ 농도는 평균 410 mg/L인 반면, $BOD_5$는 7-15 mg/L 범위로 난분해성 유기물을 다량 함유하고 있음을 알 수 있었다. 이에 황산알루미늄(Aluminium sulfate; $Al_2(SO_4){\cdot}14H_2O$)과 염화철(ferric chloride)의 무기응집제를 이용하여 자 테스트(jar test)를 수행한 결과, 동일한 응집제 주입량에서 염화철의 유기물 제거 효율이 높은 것으로 나타났다. 황산알루미늄과 염화철의 경우 각각의 응집제 주입율 5.85mM에서 89%, 7.03mM에서 97.5%의 최대 유기물 제거효율을 보여주었으며, 이 때 최종 pH는 4.0-5.6 범위이었다. 한편, 대상 원수 내의 콜로이드성 입자 또는 용존성 유기물의 작용기(functional group)는 일반적으로 음으로 하전 되어 있어 응집에 의해 잘 제거되지 않는 특성을 가지고 있다. 따라서 과량의 응집제를 주입하여 다가의 양이온성 금속염을 흡착시켜 전기적으로 중화시키고, 생성된 침전성 수화물 내에 포획 또는 여과시켜 제거하게 된다. 이 때, 금속염 수화종의 전하밀도가 응집효율에 영향을 주는 것으로 알려져 있는데, 다가의 양이온은 전기적 이중층(Double layer) 압축에 의한 불안정화를 향상시킬 수 있기 때문에다. 또한, 2가 금속염은 색도유발물질과 흡착하여 humate 또는 fulvate 등의 착화합물(complex)을 형성시켜 응집효율을 향상시킬 수 있다. 따라서 본 연구에서는 생물학적 2차 처리수의 화학적 응집처리에 있어서 알루미늄염 등의 다가이온 첨가가 응집에 미치는 영향을 관찰하고, 후속되는 플록형성 및 침전공정에 의한 제거효율을 비교, 평가함으로써 2차 처리수로부터 난분해성 유기물과 색도를 보다 효과적이고 경제적으로 제거할 수 있는 최적인자를 도출하고자 하였다.

  • PDF

Preparation and Characterization of Polysaccharide-based Nanofiber Using Electrospinning Method (전기방사 방법을 이용한 천연 다당류 나노섬유 제조 및 특성 연구)

  • Kim, Se Jong;Lee, Su Jeong;Woo, Chang Hwa;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.318-327
    • /
    • 2016
  • In this study, alginate/poly(ethylene oxide) (PEO), and chitosan/PEO solution are prepared by dissolving alginate and chitosan into specific solvent for electrospinning. Solutions are poured into 10 mL plastic syringes with a metal nozzle supplied a high voltage power. The solution of alginate and chitosan is controlled by polymer concentration, temperature, relative humidity, applied voltage, distance from nozzle and flow rate of solution. Morphologies of fabricated nanofiber are observed by scanning electron microscopy (SEM). Optimal conditions for electrospinning of alginate nanofiber membrane are 2 wt% of alginate, 2 wt% of PEO at $60^{\circ}C$, 15 cm from the nozzle, $8{\mu}m/min$ flow rate and 20~24 kV. The conditions for elctrospinning of chitosan nanofiber membrane are 2 wt% of chitosan, 2 wt% PEO at $25^{\circ}C$, 15 cm from the nozzle, $8{\mu}m/min$ flow rate and 24 kV. The fabrication conditions of complex nanofiber prepared with chitosan and alginate are 20 cm from the nozzle, $8{\mu}m/min$ flow rate and 26 kV.

Preparation and Electrical Properties of Conductive Polyaniline Langmuir-Blodgett Thin Films Doped by Various Dopants (여러가지 도판트에 의해 도핑된 전도성 폴리아닐린 LB 박막의 제조 및 전기적 성질)

  • Oh, Se Young;Oh, Byung Keun;Choi, Jeong Woo;Kim, Hyung Su;Rhee, Hee-Woo;Lee, Won Hong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.172-178
    • /
    • 1997
  • Polyaniline(PANI)-stearic acid(SA) composite monolayer was formed at the air-water interface. The stearic acid as a surfactant was used to promote PANI monolayer formation. Uniform PANI-SA monolayer assemblies with Y type and transfer ratio of ca. 1 were fabricated using the Langmuir-Blodgett(LB) technique. The PANI-SA composite LB films with high electrical conductivity of $10^{-1}{\sim}10^{-2}S/cm$ were obtained by doping of HCl or $I_2$, and their conductivity revealed essentially close value as that of conventional PAHI-HCl complex. Especially, iodine is found to be the most promising dopant, since it gives a remarkable stability for the application as a polymer electrode in the MIM molecular device consisted of acceptor, sensitizer, and donor. The structure and physical properties of PANI-SA LB films were investigated through the near-ir UV, FT-IR, and Cyclic voltammetry.

  • PDF

Studies on the Thermal and Rheological Properties of Polypropylene/Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 열적 유변학적특성 연구)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.557-561
    • /
    • 2007
  • Polypropylene (PP)/corn starch master batch (starch-MB) blends with different PP compositions of 40, 50, 60, and 80 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures and thermal properties of the PP/starch-MB blends were investigated by FT-IR, differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The chemical structure was confirmed by the existence of hydroxy group. There was no district change in melting temperature and melting enthalpy, and TGA curve indicated a decrease in degradation temperature with starch-MB content. The porosity change of blend was measured by scanning electron microscope (SEM), the degree of porosity on the blend surface increased with the starch-MB content. The rheological properties indicated an increase in complex viscosity, shear thinning tendency and elasticity with the starch-MB concentration. These effects were confirmed by an oscillatory viscometer at $200^{\circ}C$. From these results, it is found that 40 wt% is the optimum starch-MB concentration. The fiber was fabricated from PP60/MB40 with 40 wt% starch-MB and the porosity and tensile properties were investigated.

Structural Properties of Cold Water Extractable ${\alpha}-D-glucan$ in Rice Flours (쌀가루 냉수추출 ${\alpha}-D-glucan$의 분자구조적 특성)

  • Park, Yong-Kon;Seog, Ho-Moon;Nam, Young-Jung;Choi, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.603-610
    • /
    • 1990
  • The structural properties of cold water extractable ${\alpha}-D-glucan$ in rice flours obtained by various milling methods were investigated. The blue value, ${\lambda}_{max}$ values of the iodine complex and ${\beta}-amylolysis$ limit of the cold water extractable ${\alpha}-D-glucan$ were in the range of $0.026{\sim}0.030,\;518{\sim}522\;nm$ and $52.7{\sim}59.6%$, respectively, indicating these materials were composed mainly of amylopectin-like polymer. The gel chromatography on Sepharose CL-2B indicated that the cold water extractable ${\alpha}-D-glucan$ had lower molecular weight but wider molecular weight distribution than that of the original rice amylopectin. The Sephadex G-50 gel chromatography showed that the unit chain distribution of cold water extratable ${\alpha}-D-glucan$ after debranching with pullulanase was similar to that of rice amylopectin. And the ion chromatography of the distribution pattern of the chain length below D.P.30 in the debranched ${\alpha}-D-glucan$ indicated only blade-milled flour was similar to the amylopectin, but in the amount of unit chain below D.P.10, all the ${\alpha}-D-glucan$ in rice flours was higher than that of amylopectin.

  • PDF

Physicochemical Properties of Various Milled Rice Flours (제분방법별 쌀가루의 이화학적 특성)

  • Park, Yong-Kon;Seog, Ho-Moon;Nam, Young-Jung;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.504-510
    • /
    • 1988
  • The physicochemical properties of rice flours which were obtained by dry milling(blade, hammer, test and micro mill) and wet & dry milling (roller & micro mill) were investigated. The resulting flour particle sizes were reduced in the order that of blade, hammer, test, micro and roller & micro mill. Scanning electron microscopic examination showed that the starch granules were freed from the imbedding matrix as the particles became finer. The test-milled flour had the hightest levels of starch damage, maltose value and hot-water soluble amylose content, and the blade-milled flour showed the lowest levels. Amylograph viscosity and gelatinization temperature of the flours decreased as the particles became finer, and the addition of $Hg^{+2}$ increased the peak viscosity of the dry-milled flour pastes, whereas the wet & dry-milled flour did not show any changes. The blue values and ${\lambda}$max values of the iodine complex of the cold-water extractable ${\alpha}-D-glucan$ from flours were in the range of 0.023-0.029 and 518-522nm, respectively, indicating these materials were shown to be mainly composed of amylopectin-like polymer.

  • PDF

Fabrication and Property of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Hollow Fiber Membranes (Ba0.5Sr0.5Co0.8Fe0.2O3-δ 중공사 분리막의 제조 및 물성)

  • Jeon, Sung Il;Park, Jung Hoon;Kim, Jong Pyo;Sim, Woo Jong;Lee, Yong Taek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber with o.d. 1.02 mm and i.d. 0.437 mm were fabricated by a phase-inversion spinning technique.The starting $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ precursor was synthesized by the polymerized complex method and then calcined at $900^{\circ}C$. As-prepared powder was dispersed in a polymer solution, and extruded as form of hollow fiber through a spinneret. Finallydense $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ hollow fiber membrane was obtained by sintering for 2 h at $1,080^{\circ}C$ for the application of oxygen separation. In addition, despite a very thin membrane with 0.58 mm, the BSCF hollow fiber membrane possessed a proper mechanical strength of 602.5 MPa.

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone (선회류를 이용한 응집침전모듈의 개발 및 실증 연구)

  • Moon, Jinyoung;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3336-3344
    • /
    • 2014
  • The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

A study of the space sterilization device using atmospheric-pressure DBDs plasma (대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구)

  • Oh, Hee-Su;Lee, Kang-yeon;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.