Preparation and Electrical Properties of Conductive Polyaniline Langmuir-Blodgett Thin Films Doped by Various Dopants

여러가지 도판트에 의해 도핑된 전도성 폴리아닐린 LB 박막의 제조 및 전기적 성질

  • 오세용 (서강대학교 공과대학 화학공학과) ;
  • 오병근 (서강대학교 공과대학 화학공학과) ;
  • 최정우 (서강대학교 공과대학 화학공학과) ;
  • 김형수 (단국대학교 공과대학 화학공학과) ;
  • 이희우 (서강대학교 공과대학 화학공학과) ;
  • 이원홍 (서강대학교 공과대학 화학공학과)
  • Received : 1996.08.07
  • Accepted : 1997.02.24
  • Published : 1997.04.10

Abstract

Polyaniline(PANI)-stearic acid(SA) composite monolayer was formed at the air-water interface. The stearic acid as a surfactant was used to promote PANI monolayer formation. Uniform PANI-SA monolayer assemblies with Y type and transfer ratio of ca. 1 were fabricated using the Langmuir-Blodgett(LB) technique. The PANI-SA composite LB films with high electrical conductivity of $10^{-1}{\sim}10^{-2}S/cm$ were obtained by doping of HCl or $I_2$, and their conductivity revealed essentially close value as that of conventional PAHI-HCl complex. Especially, iodine is found to be the most promising dopant, since it gives a remarkable stability for the application as a polymer electrode in the MIM molecular device consisted of acceptor, sensitizer, and donor. The structure and physical properties of PANI-SA LB films were investigated through the near-ir UV, FT-IR, and Cyclic voltammetry.

폴리아닐린(PANI)-stearic acid(SA) 복합물의 단분자막이 공기-물 계면에서 형성되었으며, 계면활성제인 stearic acid는 PANI 단분자막의 형성을 증진시키는데 사용되었다. Langmuir-Blodgett(LB) 기법을 사용하여 약 1의 전이비와 Y형태를 갖는 균일한 PANI-SA의 다층막을 제조하였다. HCI 또는 $I_2$의 도핑에 의해 $10^{-1}{\sim}10^{-2}S/cm$의 높은 전기 전도도를 갖는 PANI-SA 복합막의 LB 필름을 얻었고, 그 값은 전형적인 PANI-HCl 착제와 비슷한 전도도를 나타냈다. 특히 $I_2$는 전자수용체/감광체/전자공여체로 구성된 MIM 분자 device에서 고분자 전극으로 사용하는데 뛰어난 안정성을 제공해 주기 때문에 가장 적합한 도판트로 밝혀졌다. PANI-SA LB 필름의 구조와 물리적 성질은 near-ir UV, FT-IR과 Cyclic voltammetry를 통해 조사하였다.

Keywords

Acknowledgement

Supported by : 서강대학교

References

  1. J. Electroanal. Chem. v.195 E. M. Genies;C. Tsintavis
  2. Synth Met. v.32 S. Y. Oh;K. Akagi;H. Shirakawa
  3. J. Am. Chem. Soc. v.111 Z. Cai;C. R. Martin
  4. Synth. Met. v.36 E. M. Geneies;A. Boyle;M. Lapkowski;C. Tsintavis
  5. Nature v.357 G. Gustafsson;Y. Cao;G. M. Trevedi;F. Klavetter;N. Colaneri;A. J. Heeger
  6. J. Appl. Electrochem. v.22 S. K. Dhawan;D. C. Trovedi
  7. Macromolecules v.26 S. Y. Oh;K. Akagi;H. Shirakawa;K. Araya
  8. Mol. Cryst. Liq. Cryst. v.255 H. Shirakawa;Y. Kadokura;H. Goto;S. Y. Oh;K. Akagi;K. Araya
  9. Synth Met. v.71 H. Goto;K. Alkagi;H. Shirakawa;S. Y. Oh;K. Araya
  10. Synth Met. v.48 Y. Cao;P. Smith;A. J. Heeger
  11. 화학공학의 이론과 응용 v.1 H. C. Ko;S. Y. Oh
  12. J. Kor. Ind. & Eng. Chem. v.6 S. Y. Oh;H. C. Koh
  13. Thin Solid Films v.92 K. Kudo;K. Itadera;S. Kuniyoshi;K. Tanak
  14. Langmuir-Blodgett Films v.92 G. Roberts
  15. Thin Solid Films v.210 S. Isoda;S. Nishikawa;S. Ueyama;Y. Hanazato;H. Kawakobo;M. Maeda
  16. Symposium on Future Electron Devices v.12 S. Isoda;S. Ueyama;S. Nishikawa;M. Miyamoto;K. Akiyam;Y. Hanazato;O. Wada;M. Maeda
  17. Nature v.318 J. Deisenhofer
  18. Molecular Electronics : Biosensors and Biocomupters H. Kuhn;F. T. Hong(ed.)
  19. Molecular Electronics and Devices v.359 J. W. Choi;S. Y. Oh;W. H. Lee;G. Y. Jung;D. M. Shin
  20. J. of Ind. & Eng. Chemistry v.2 S. Y. Oh;G. Y. Jung;J. W. Choi;D. M. Shin;W. H. Lee
  21. Synth. Met. v.73 K. G. Neoh;M. Y. Pun;E. T. Kang;K. L. Tan
  22. Phys. Rev. Lett. v.6 M. G. Roc;J. M. Ginder;P. E. Wigen;A. J. Epstein;M. Angelopoulos;A. G. MiacDiarmid