Browse > Article
http://dx.doi.org/10.15207/JKCS.2022.13.03.281

A study of the space sterilization device using atmospheric-pressure DBDs plasma  

Oh, Hee-Su (Dept. of Electrical Engineering, Nambu University)
Lee, Kang-yeon (Dept. of Electrical Engineering, Chosun College of Science & Technology)
Park, Ju-Hoon (Dept. of Electrical Engineering, Nambu University)
Jeong, Byeong-Ho (Dept. of Electrical Engineering, Nambu University)
Publication Information
Journal of the Korea Convergence Society / v.13, no.3, 2022 , pp. 281-289 More about this Journal
Abstract
Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.
Keywords
Plasma; Dielectric barrier discharges; Ozone; Disinfection; Space sterilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI : 10.1109/TPS.2018.2870345   DOI
2 S. J. Choi, K. C. Lee & B. H. Cho. (2005). Design of Fluorescent Lamp Ballast With PFC Using a Power Piezoelectric Transformer. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 52(6). 1573-1581. DOI : 10.1109/TIE.2005.858726   DOI
3 C. Tendero, C. Tixiera, P. Tristanta & J. Desmaisona & P. Leprince. (2006). Atmospheric pressure plasmas: A review, Atomic Spectroscopy, 61(1), 2006, 2-30. DOI : 10.1016/j.sab.2005.10.003   DOI
4 L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan & H. Chen. (2018). Medical applications of nonthermal atmospheric pressure plasma in dermatology. JDDG, J. Deutschen Dermatol. Gesellschaft, 16(1), 7-13. DOI : 10.1111/ddg.13373   DOI
5 S. Portugal1, S. Roy & J. Lin. (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air. Scientific REPOrtS, 1-11. DOI : 10.1038/s41598-017-06038-w   DOI
6 Y. Ju, J. K. Lefkowitz & C. B. Reuter et al. (2016) Plasma Assisted Low Temperature Combustion. Plasma Chem Plasma Process, 36, 85-105. DOI : 10.1007/s11090-015-9657-2   DOI
7 Y. Setsuhara. (2016). Low-temperature atmospheric-pressure plasma sources for plasma medicine. Archives of biochemistry and biophysics, 605, 3-10. DOI : 10.1016/j.abb.2016.04.009   DOI
8 S. Portugal, S. Roy & J. Lin. (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air, Sci Rep 7, 6388. DOI : 10.1038/s41598-017-06038-w   DOI
9 D. Vasic, F. Costa & E. Sarraute. (2006). Piezoelectric Transformer for Integrated MOSFET and IGBT Gate Driver. IEEE TRANSACTIONS ON POWER ELECTRONICS, 21(1), 56-65. DOI : 10.1109/TPEL.2005.861121   DOI
10 M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI : 10.1109/TPS.2018.2870345   DOI
11 K. Shimizu & M. Blajan. (2015). Basic study on force induction using dielectric barrier microplasma array, Japanese Journal of Applied Physics, 54(1S), 01AA07 . DOI : 10.7567/JJAP.54.01AA07   DOI
12 H. X. Wang, Y. Long & Y. Y. J. (2020). Design of New Submerged Ozone Generator, ICAEER 2020, Volume 194, 1-4. DOI : 10.1051/e3sconf/202019405011   DOI
13 M. Babija, T. Gotszalka, Z.W. Kowalskia, K. Nitscha, J. Silberringb & M. Smoluchb (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Proc. of the 8th International Conference NEET 2013, Zakopane, Poland, 1821-2013. DOI : 10.12693/APhysPolA.125.1260   DOI
14 N. Mastanaiah, P. Banerjee, S. Roy A. Johnson & Subrata Roy. (2013) Examining the Role of Ozone in Surface Plasma Sterilization Using Dielectric Barrier Discharge (DBD) Plasma. Plasma Process Polymer, 10(12), 1120-1133. DOI : 10.1002/ppap.201300108   DOI
15 E. Grignani et al. (2021). Safe and Effective Use of Ozone as Air and Surface Disinfectant in the Conjuncture of Covid-19. Gases, 1(1), 19-32. DOI : 10.3390/gases1010002   DOI