DOI QR코드

DOI QR Code

A study of the space sterilization device using atmospheric-pressure DBDs plasma

대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구

  • Oh, Hee-Su (Dept. of Electrical Engineering, Nambu University) ;
  • Lee, Kang-yeon (Dept. of Electrical Engineering, Chosun College of Science & Technology) ;
  • Park, Ju-Hoon (Dept. of Electrical Engineering, Nambu University) ;
  • Jeong, Byeong-Ho (Dept. of Electrical Engineering, Nambu University)
  • 오희수 (남부대학교 전기공학과) ;
  • 이강연 (조선이공대학교 전기과) ;
  • 박주훈 (남부대학교 전기공학과) ;
  • 정병호 (남부대학교 전기공학과)
  • Received : 2021.12.25
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.

플라즈마오존은 높은 살균성능으로 인해 다양한 살균분야에서 활용되고 있다. DBD(유전체 장벽방전)에 사용되는 유전체는 주로 석영, 세라믹, 폴리머 등이 주로 사용된다. 유전체로 이루어진 레이어는 공급되는 전하의 양을 제한시키고 플라즈마가 유전체 면 위에서 고르게 발생할 수 있도록 하는 역할을 한다. 이러한 DBD를 이용한 플라즈마, 오존살균은 살균대상이나 주변 환경이 복잡한 구조로 된 경우가 많아 공간살균에 대한 개념을 수립하고 이에 대한 연구와 학문적 체계가 필요하다. 본 연구에서는 플라즈마라디칼과 오존 생성을 위해 대기압에서 DBD방식을 이용한다. 플라즈마오존의 발생을 위한 반응기의 구조는 세라믹 튜브 유전체와 스테인리스 도체를 일정한 간격으로 배치하여 유전체 장벽방전을 발생시키는 형태이다. 공간살균장치로서의 플라즈마오존 발생은 성능 면에서 우수한 살균장치로 인식되고 있으므로 장치의 설계와 검증을 통해 공간살균장치의 최적설계를 확립하고자 하며 제안된 방법을 기반으로 다양한 살균 어플리케이션을 개발하는데 기초를 제공한다.

Keywords

Acknowledgement

This study was supported by research funds from Nambu University, 2021. This work was supported by a grant (NIBR201701202) from the "Regional Demand-Customized R&D Project in Jeollanam-do" in 2020 funded by the Jeollanam-do, Republic of Korea.

References

  1. D. Vasic, F. Costa & E. Sarraute. (2006). Piezoelectric Transformer for Integrated MOSFET and IGBT Gate Driver. IEEE TRANSACTIONS ON POWER ELECTRONICS, 21(1), 56-65. DOI : 10.1109/TPEL.2005.861121
  2. M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI : 10.1109/TPS.2018.2870345
  3. S. Portugal, S. Roy & J. Lin. (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air, Sci Rep 7, 6388. DOI : 10.1038/s41598-017-06038-w
  4. K. Shimizu & M. Blajan. (2015). Basic study on force induction using dielectric barrier microplasma array, Japanese Journal of Applied Physics, 54(1S), 01AA07 . DOI : 10.7567/JJAP.54.01AA07
  5. M. Babija, T. Gotszalka, Z.W. Kowalskia, K. Nitscha, J. Silberringb & M. Smoluchb (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Proc. of the 8th International Conference NEET 2013, Zakopane, Poland, 1821-2013. DOI : 10.12693/APhysPolA.125.1260
  6. M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI : 10.1109/TPS.2018.2870345
  7. S. J. Choi, K. C. Lee & B. H. Cho. (2005). Design of Fluorescent Lamp Ballast With PFC Using a Power Piezoelectric Transformer. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 52(6). 1573-1581. DOI : 10.1109/TIE.2005.858726
  8. C. Tendero, C. Tixiera, P. Tristanta & J. Desmaisona & P. Leprince. (2006). Atmospheric pressure plasmas: A review, Atomic Spectroscopy, 61(1), 2006, 2-30. DOI : 10.1016/j.sab.2005.10.003
  9. L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan & H. Chen. (2018). Medical applications of nonthermal atmospheric pressure plasma in dermatology. JDDG, J. Deutschen Dermatol. Gesellschaft, 16(1), 7-13. DOI : 10.1111/ddg.13373
  10. S. Portugal1, S. Roy & J. Lin. (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air. Scientific REPOrtS, 1-11. DOI : 10.1038/s41598-017-06038-w
  11. Y. Ju, J. K. Lefkowitz & C. B. Reuter et al. (2016) Plasma Assisted Low Temperature Combustion. Plasma Chem Plasma Process, 36, 85-105. DOI : 10.1007/s11090-015-9657-2
  12. Y. Setsuhara. (2016). Low-temperature atmospheric-pressure plasma sources for plasma medicine. Archives of biochemistry and biophysics, 605, 3-10. DOI : 10.1016/j.abb.2016.04.009
  13. H. X. Wang, Y. Long & Y. Y. J. (2020). Design of New Submerged Ozone Generator, ICAEER 2020, Volume 194, 1-4. DOI : 10.1051/e3sconf/202019405011
  14. N. Mastanaiah, P. Banerjee, S. Roy A. Johnson & Subrata Roy. (2013) Examining the Role of Ozone in Surface Plasma Sterilization Using Dielectric Barrier Discharge (DBD) Plasma. Plasma Process Polymer, 10(12), 1120-1133. DOI : 10.1002/ppap.201300108
  15. E. Grignani et al. (2021). Safe and Effective Use of Ozone as Air and Surface Disinfectant in the Conjuncture of Covid-19. Gases, 1(1), 19-32. DOI : 10.3390/gases1010002