• 제목/요약/키워드: complete bipartite graphs

검색결과 22건 처리시간 0.022초

RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS, CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

  • Lee, Eon-Kyung;Lee, Sang-Jin
    • Korean Journal of Mathematics
    • /
    • 제29권3호
    • /
    • pp.577-580
    • /
    • 2021
  • For a finite simplicial graph 𝚪, let G(𝚪) denote the right-angled Artin group on the complement graph of 𝚪. For path graphs Pk, cycle graphs C and complete bipartite graphs Kn,m, this article characterizes the embeddability of G(Kn,m) in G(Pk) and in G(C).

THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n

  • Kim, Dongseok
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.399-415
    • /
    • 2014
  • We study the Seifert surfaces of a link by relating the embeddings of graphs with induced graphs. As applications, we prove that every link L is the boundary of an oriented surface which is obtained from a graph embedding of a complete bipartite graph $K_{2,n}$, where all voltage assignments on the edges of $K_{2,n}$ are 0. We also provide an algorithm to construct such a graph diagram of a given link and demonstrate the algorithm by dealing with the links $4^2_1$ and $5_2$.

Complexity Issues of Perfect Roman Domination in Graphs

  • Chakradhar, Padamutham;Reddy, Palagiri Venkata Subba
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.661-669
    • /
    • 2021
  • For a simple, undirected graph G = (V, E), a perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the sum f(V) = ∑v∈V f(v). The minimum weight of a PRDF is called the perfect Roman domination number, denoted by γRP(G). Given a graph G and a positive integer k, the PRDF problem is to check whether G has a perfect Roman dominating function of weight at most k. In this paper, we first investigate the complexity of PRDF problem for some subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bipartite graphs. Then we show that PRDF problem is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.

CLASSIFICATION OF REFLEXIBLE EDGE-TRANSITIVE EMBEDDINGS OF $K_{m,n}$ FOR ODD m, n

  • Kwon, Young-Soo
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.533-541
    • /
    • 2009
  • In this paper, we classify reflexible edge-transitive embeddings of complete bipartite graphs $K_{m,n}$ for any odd positive integers m and n. As a result, for any odd m, n, it will be shown that there exists only one reflexible edge-transitive embedding of $K_{m,n}$ up to isomorphism.

H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

  • KUMAR, SOLOMON STALIN;MARIMUTHU, GURUSAMY THEVAR
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.313-325
    • /
    • 2015
  • An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

EVERY LINK IS A BOUNDARY OF A COMPLETE BIPARTITE GRAPH K2,n

  • Jang, Yongjun;Jeon, Sang-Min;Kim, Dongseok
    • Korean Journal of Mathematics
    • /
    • 제20권4호
    • /
    • pp.403-414
    • /
    • 2012
  • A voltage assignment on a graph was used to enumerate all possible 2-cell embeddings of a graph onto surfaces. The boundary of the surface which is obtained from 0 voltage on every edges of a very special diagram of a complete bipartite graph $K_{m,n}$ is surprisingly the ($m,n$) torus link. In the present article, we prove that every link is the boundary of a complete bipartite multi-graph $K_{m,n}$ for which voltage assignments are either -1 or 1 and that every link is the boundary of a complete bipartite graph $K_{2,n}$ for which voltage assignments are either -1, 0 or 1 where edges in the diagram of graphs may be linked but not knotted.

THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH MORE EDGES

  • XU, KEXIANG;TANG, KECHAO;LIU, HONGSHUANG;WANG, JINLAN
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.365-377
    • /
    • 2015
  • For a (molecular) graph, the first and second Zagreb indices (M1 and M2) are two well-known topological indices, first introduced in 1972 by Gutman and Trinajstić. The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Let $K_{n_1,n_2}^{P}$ with n1 $\leq$ n2, n1 + n2 = n and p < n1 be the set of bipartite graphs obtained by deleting p edges from complete bipartite graph Kn1,n2. In this paper, we determine sharp upper and lower bounds on Zagreb indices of graphs from $K_{n_1,n_2}^{P}$ and characterize the corresponding extremal graphs at which the upper and lower bounds on Zagreb indices are attained. As a corollary, we determine the extremal graph from $K_{n_1,n_2}^{P}$ with respect to Zagreb coindices. Moreover a problem has been proposed on the first and second Zagreb indices.

FUZZY SUPER SUBDIVISION MODEL WITH AN APPLICATION IN INFECTION GROWTH ANALYSIS

  • Jeba Sherlin Mohan;Samad Noeiaghdam;Leo Savarimuthu;Bharathi Thangavelu
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.803-819
    • /
    • 2024
  • In our study, the integration of fuzzy graphs into classical graph theory gives rise to a novel concept known as "Fuzzy Super Subdivision." Let SSf (G) be the fuzzy super subdivision graphs, by substituting a complete bipartite graph k(2,m) (m = 1, 2, . . .) for each edge of a fuzzy graph. The attributes and properties of this newly proposed concept are briefly outlined, in addition to illustrative examples. Furthermore, significant findings are discussed on connectivity, size, degree and order of fuzzy super subdivision structures. To illustrate the practical implications of our approach, we present an application focused on analyzing the growth of infections in blood or urine samples using the Fuzzy Super Subdivision model.

Reconfiguring k-colourings of Complete Bipartite Graphs

  • Celaya, Marcel;Choo, Kelly;MacGillivray, Gary;Seyffarth, Karen
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.647-655
    • /
    • 2016
  • Let H be a graph, and $k{\geq}{\chi}(H)$ an integer. We say that H has a cyclic Gray code of k-colourings if and only if it is possible to list all its k-colourings in such a way that consecutive colourings, including the last and the first, agree on all vertices of H except one. The Gray code number of H is the least integer $k_0(H)$ such that H has a cyclic Gray code of its k-colourings for all $k{\geq}k_0(H)$. For complete bipartite graphs, we prove that $k_0(K_{\ell},r)=3$ when both ${\ell}$ and r are odd, and $k_0(K_{\ell},r)=4$ otherwise.