RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS, CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

Eon-Kyung Lee[†] and Sang-Jin Lee^{*‡}

ABSTRACT. For a finite simplicial graph Γ , let $G(\Gamma)$ denote the right-angled Artin group on the complement graph of Γ . For path graphs P_k , cycle graphs C_ℓ and complete bipartite graphs $K_{n,m}$, this article characterizes the embeddability of $G(K_{n,m})$ in $G(P_k)$ and in $G(C_\ell)$.

1. Introduction

Throughout this article all graphs are simple. For a graph Γ , let $V(\Gamma)$ and $E(\Gamma)$ denote the vertex set and the edge set of Γ , respectively. For a finite graph Γ , the right-angled Artin group (RAAG) on Γ is the group presented by

$$A(\Gamma) = \langle a \in V(\Gamma) \mid [a, b] = 1 \text{ if } \{a, b\} \in E(\Gamma) \rangle.$$

It is well-known that two RAAGs $A(\Gamma_1)$ and $A(\Gamma_2)$ are isomorphic as groups if and only if Γ_1 and Γ_2 are isomorphic as graphs [4].

The following opposite convention is often used as well.

$$G(\Gamma) = \langle a \in V(\Gamma) \mid [a, b] = 1 \text{ if } \{a, b\} \notin E(\Gamma) \rangle$$

In other words, $G(\Gamma) = A(\bar{\Gamma})$, where $\bar{\Gamma}$ denotes the complement graph of Γ . The present article uses this convention. For example, if Γ is the path graph P_n on $n \ge 2$ vertices a_1, \ldots, a_n as in Figure 2(a), then

$$G(P_n) = \langle a_1, \dots, a_n \mid [a_i, a_j] = 1 \text{ if } |i - j| \geqslant 2 \rangle.$$

If Γ is the complete bipartite graph $K_{n,m}$ with vertex set $\{a_1,\ldots,a_n\} \cup \{b_1,\ldots,b_m\}$ as in Figure 1(a), then

$$G(K_{n,m}) = \left\langle \begin{array}{c} a_1, \dots, a_n, \\ b_1, \dots, b_m \end{array} \middle| \begin{array}{c} [a_i, a_j] = 1 & \text{for } i, j \in \{1, \dots, n\}, \\ [b_k, b_\ell] = 1 & \text{for } k, \ell \in \{1, \dots, m\} \end{array} \right\rangle \cong \mathbb{Z}^n * \mathbb{Z}^m.$$

DEFINITION 1.1. (i) For a subset $A \subset V(\Gamma)$, the subgraph Λ of Γ with $V(\Lambda) = A$ and $E(\Lambda) = \{\{a,b\} \in E(\Gamma) : a,b \in A\}$ is called the *subgraph of* Γ *induced by* A.

Received August 4, 2021. Revised August 28, 2021. Accepted August 30, 2021.

2010 Mathematics Subject Classification: 20F65, 20F36.

Key words and phrases: right-angled Artin groups, embeddability, extension graphs.

- † This work was partially supported by NRF-2018R1D1A1B07043291.
- \ddagger This work was partially supported by NRF-2018R1D1A1B07043268.
- * Corresponding author.
- © The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

FIGURE 1. Complete bipartite graph, cycle graph, tripod

- (ii) If a graph Λ embeds into Γ as an induced subgraph, we write $\Lambda \leqslant \Gamma$.
- (iii) If a group H embeds into a group G, i.e. if there exists a monomorphism from H to G, then we write $H \leq G$.
- (iv) For elements g, h of a group, g^h and [g, h] denote the conjugate $h^{-1}gh$ and the commutator $g^{-1}h^{-1}gh$, respectively.

It is easy to see that $\Gamma_1 \leq \Gamma_2$ implies $G(\Gamma_1) \leq G(\Gamma_2)$, however, the converse does not hold. The following is a fundamental question for RAAGs.

[Embeddability Problem] Is there an algorithm to decide whether or not there exists an embedding between two given RAAGs?

The embeddability problem has been studied in various papers, e.g. [1, 3, 5–11]. In particular, the following are known for path graphs and cycle graphs. Let C_n denote the cycle graph on $n \ge 3$ vertices as in Figure 1(b).

- (i) For $m, n \ge 4$, $A(C_m) \le A(C_n)$ if and only if m = n + k(n-4) for some $k \ge 0$ [8];
- (ii) $G(P_m) \leqslant G(P_n)$ (resp. $G(C_m) \leqslant G(C_n)$) if and only if $n \geqslant m$ [5,7];
- (iii) $G(P_m) \leq G(C_n)$ if and only if $n \geq m+1$ [5];
- (iv) $G(C_m) \leq G(P_n)$ if and only if $n \geq 2m 2$ [10];
- (v) $G(T_2) \leq G(P_{22})$, where T_2 denotes the tripod in Figure 1(c) [11].

This article shows the following embeddability between RAAGs on path graphs, cycle graphs and complete bipartite graphs.

THEOREM 1.2. For $n \ge 2$ and $n \ge m$, the following hold.

- (i) $G(K_{n,m}) \cong \mathbb{Z}^n * \mathbb{Z}^m \leqslant G(P_k)$ if and only if $k \geqslant 2n 1$.
- (ii) $G(K_{n,m}) \cong \mathbb{Z}^n * \mathbb{Z}^m \leqslant G(C_{\ell})$ if and only if $\ell \geqslant 2n$.

As a tool to solve the embeddability problem, Sang-hyun Kim and Thomas Koberda [8] introduced the notion of extension graphs. The *extension graph*, denoted by Γ^E , of Γ with respect to $G(\Gamma)$ is defined by

$$V(\Gamma^{E}) = \{ a^{g} \in G(\Gamma) : a \in V(\Gamma), g \in G(\Gamma) \},$$

$$E(\Gamma^{E}) = \{ \{a^{g}, b^{h}\} : a^{g}, b^{h} \in V(\Gamma^{E}), [a^{g}, b^{h}] \neq 1 \text{ in } G(\Gamma) \}.$$

It is clear that $\Gamma \leqslant \Gamma^E$. Extension graphs are usually infinite and locally infinite. Our work uses the extension graph theorem [8, Theorem 1.3] which states, under our convention, that for finite graphs Γ_1 and Γ_2 , if $\Gamma_1 \leqslant \Gamma_2^E$ then $G(\Gamma_1) \leqslant G(\Gamma_2)$.

FIGURE 2. $w = (a_1 a_2 \cdots a_5)(a_4 a_3 a_2 a_1)$

2. Proof of Theorem 1.2

For a finite graph Γ and $g \in G(\Gamma)$, the *support* of g, denoted by supp(g), is defined as the set of vertices a in Γ such that a or a^{-1} appears in a reduced word representing g. It is known that supp(g) is well-defined.

First we show that a complete bipartite graph embeds into the extension graph of a path graph.

Proposition 2.1. $K_{n,n} \leqslant P_{2n-1}^E$ for $n \geqslant 2$.

Proof. Let a_1, \ldots, a_{2n-1} denote the vertices of P_{2n-1} in this order as in Figure 2(a). Choose any $w \in G(P_{2n-1})$ such that $\operatorname{supp}(a_i^w) = V(P_{2n-1})$ for each $i \in \{1, \ldots, 2n-1\}$. For instance, we may take $w = (a_1 a_2 \cdots a_{2n-1})(a_{2n-2} \cdots a_2 a_1)$.

Let Γ be the subgraph of P_{2n-1}^E induced by

$$\{a_1, a_3, \dots, a_{2n-1}\} \cup \{a_1^w, a_3^w, \dots, a_{2n-1}^w\}.$$

Now we will show that Γ is isomorphic to $K_{n,n}$, which completes the proof.

For distinct $i, j \in \{1, 3, 5, ..., 2n - 1\}$, one has $[a_i, a_j] = 1$ and hence $[a_i^w, a_j^w] = 1$ in $G(P_{2n-1})$, which implies $\{a_i, a_j\}, \{a_i^w, a_j^w\} \notin E(P_{2n-1}^E)$. See Figure 2(b).

Meanwhile, it is well-known by the centralizer theorem of Servatius [12] that, for a finite graph Λ and $a \in V(\Lambda)$, if $g \in G(\Lambda)$ commutes with a, then each element of $\operatorname{supp}(g)$ commutes with a. Thus, for any $i, j \in \{1, 3, 5, \dots, 2n-1\}$, one has $[a_i, a_j^w] \neq 1$ in $G(P_{2n-1})$ because $\operatorname{supp}(a_j^w) = V(P_{2n-1})$. Namely $\{a_i, a_j^w\} \in E(P_{2n-1}^E)$. See Figure 2(b).

Using the above proposition, we prove Theorem 1.2.

Proof of Theorem 1.2. (i) Let $k \ge 2n-1$. Since $P_{2n-1} \le P_k$, we have $G(P_{2n-1}) \le G(P_k)$. Since $K_{n,n} \le P_{2n-1}^E$ by Proposition 2.1, we have $G(K_{n,n}) \le G(P_{2n-1})$ by the extension graph theorem [8, Theorem 1.3]. Meanwhile, the condition $m \le n$ implies $K_{n,m} \le K_{n,n}$ and hence $G(K_{n,m}) \le G(K_{n,n})$. Therefore $G(K_{n,m}) \le G(P_k)$.

Conversely, assume that $G(K_{n,m}) \leq G(P_k)$.

It is well-known (e.g. [2] and [8, Lemma 2.3]) that, for a finite graph Γ , the maximum rank of a free abelian subgroup of $A(\Gamma)$ is the clique number of Γ , i.e. the maximum number of pairwise adjacent vertices in Γ . Since $G(\Gamma) = A(\bar{\Gamma})$, the maximum rank of a free abelian subgroup of $G(\Gamma)$ is the independence number of Γ , i.e. the maximum number of pairwise non-adjacent vertices in Γ .

Thus the maximum rank of a free abelian subgroup of $G(P_k)$ is $\lceil k/2 \rceil$. Since $G(K_{n,m})$ contains a free abelian subgroup of rank n, we have $\lceil k/2 \rceil \geqslant n$ and hence $k \geqslant 2n-1$.

(ii) Let $\ell \geq 2n$. Choose any k with $2n \leq k+1 \leq \ell$ (e.g. $k=\ell-1$). Then $G(K_{n,m}) \leq G(P_k)$ by (i), and $G(P_k) \leq G(C_\ell)$ by [5, Theorem1.4(3)]. Therefore $G(K_{n,m}) \leq G(C_\ell)$.

Conversely, assume that $G(K_{n,m}) \leq G(C_{\ell})$. Then the proof is similar to (i). More precisely, the maximum rank of a free abelian subgroup of $G(C_{\ell})$ is $\lfloor \ell/2 \rfloor$ that is the independence number of C_{ℓ} . Since $G(K_{n,m})$ contains a free abelian subgroup of rank n, we have $\lfloor \ell/2 \rfloor \geq n$ and hence $\ell \geq 2n$.

References

- [1] M. Casals-Ruiz, A. Duncan and I. Kazachkov, *Embeddings between partially commutative groups:* two counterexamples, J. Algebra. **390** (2013), 87–99.
- [2] R. Charney and K. Vogtmann, Finiteness properties of automorphism groups of rightangled Artin groups, Bull. Lond. Math. Soc. 41 (2009), 94–102.
- [3] J. Crisp, M. Sageev and M. Sapir, Surface subgroups of right-angled Artin groups, Internat. J. Algebra Comput. 18 (2008), 443–491.
- [4] C. Droms, Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100 (1987), 407–408.
- [5] T. Katayama, Right-angled Artin groups and full subgraphs of graphs, J. Knot Theory Ramifications. 26 (2017), 1750059.
- [6] T. Katayama, Embeddability of right-angled Artin groups on the complements of linear forests,
 J. Knot Theory Ramifications. 27 (2018), 1850010.
- [7] S.-h. Kim, Co-contractions of graphs and right-angled Artin groups, Algebr. Geom. Topol. 8 (2008), 849-–868.
- [8] S.-h. Kim and T. Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013), 493–530.
- [9] S.-h. Kim and T. Koberda, Anti-trees and right-angled Artin subgroups of braid group, Geom. Topol. 19 (2015), 3289–3306.
- [10] E.-K. Lee and S.-J. Lee, Path lifting properties and embedding between RAAGs, J. Algebra. 448 (2016), 575–594.
- [11] E.-K. Lee and S.-J. Lee, *Embeddability of right-angled Artin groups on complements of trees*, Internat. J. Algebra Comput. **28** (2018), 381–394.
- [12] H. Servatius, Automorphisms of graph groups, J. Algebra. 126 (1989), 179–197.

Eon-Kyung Lee

Department of Mathematics Sejong University Seoul 05006, Korea E-mail: eonkyung@sejong.ac.kr

Sang-Jin Lee

Department of Mathematics Konkuk University Seoul 05029, Korea E-mail: sangjin@konkuk.ac.kr