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RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS,
CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

EoN-KvyunNG LEET AND SANG-JIN LEE*

ABSTRACT. For a finite simplicial graph T', let G(I'") denote the right-angled Artin
group on the complement graph of I'. For path graphs Py, cycle graphs Cy and com-
plete bipartite graphs K, ,,, this article characterizes the embeddability of G(Ky, )
in G(Py) and in G(Cy).

1. Introduction

Throughout this article all graphs are simple. For a graph I', let V(") and E(I")
denote the vertex set and the edge set of I', respectively. For a finite graph I, the
right-angled Artin group (RAAG) on T is the group presented by

AT)=(a e V(D) | [a,b] =1if {a,b} € E(I")).
It is well-known that two RAAGs A(I';) and A(I'y) are isomorphic as groups if and
only if I'y and I'y are isomorphic as graphs [4].
The following opposite convention is often used as well.
G(I) = (aeV()|[a,b] =1if {a,b} & E(T'))

In other words, G(I') = A(T'), where I' denotes the complement graph of T'. The
present article uses this convention. For example, if I' is the path graph P, on n > 2
vertices aq, ..., a, as in Figure 2(a), then

G<Pn>: <CL1,...,CLn ’ [aiaaj] =1if |Z_j| >2>

If I' is the complete bipartite graph K, ,,, with vertex set {ai,...,a,} U {b1,...,bn}
as in Figure 1(a), then

) oar,..,an, | |, =1 fori,je{l,...,n},

G (EKonm) —< b b | (bl =1 for b lc{l,....m}

> AR Y/

DEFINITION 1.1. (i) For asubset A C V(I'), the subgraph A of I' with V/(A) = A
and E(A) = {{a,b} € E(I') : a,b € A} is called the subgraph of T" induced by A.
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FiGure 1. Complete bipartite graph, cycle graph, tripod

(i) If a graph A embeds into I' as an induced subgraph, we write A < T

(iii) If a group H embeds into a group G, i.e. if there exists a monomorphism from
H to G, then we write H < G.

(iv) For elements g, h of a group, ¢" and [g, h] denote the conjugate h='gh and the
commutator g~ th~1gh, respectively.

It is easy to see that I'y < I'y implies G(I';) < G(I'2), however, the converse does
not hold. The following is a fundamental question for RAAGs.

[Embeddability Problem] Is there an algorithm to decide whether or not
there exists an embedding between two given RAAGs?

The embeddability problem has been studied in various papers, e.g. [1,3,5-11]. In
particular, the following are known for path graphs and cycle graphs. Let C), denote
the cycle graph on n > 3 vertices as in Figure 1(b).

(i) Form,n > 4, A(C,,,) < A(C,,) if and only if m = n+k(n —4) for some k > 0 [8];
(ii) G(P, ) < G( ) (resp. G(C,,) < G(C,)) if and only if n > m [5,7];

(i) G(P,) < G(C,) if and only if n > m + 1 [5];

(iv) G(Cy,) < G(P,) if and only if n > 2m — 2 [10];

(v) G(Ty) < G(Py), where Ty denotes the tripod in Figure 1(c) [11].

This article shows the following embeddability between RAAGs on path graphs,
cycle graphs and complete bipartite graphs.

THEOREM 1.2. For n > 2 and n > m, the following hold.
(i) G(Kym) EZ"+ 2™ < G(Py) if and only if k > 2n — 1.
(i) G(Kpm) 72"+ Z™ < G(Cy) if and only if € > 2n.

As atool to solve the embeddability problem, Sang-hyun Kim and Thomas Koberda [§]
introduced the notion of extension graphs. The extension graph, denoted by ', of T
with respect to G(I") is defined by

V(I") ={a’ € G(T):aeV(), g€ G(I)},
E(T") = {{a%b"} : a?, " € V(T'F), [a% "] # 1 in G(T') }.
It is clear that I' < I'?. Extension graphs are usually infinite and locally infinite.

Our work uses the extension graph theorem [8, Theorem 1.3] which states, under our
convention, that for finite graphs T’y and Ty, if Ty < T'F then G(T;) < G(T).
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FIGURE 2. w = (ajas - - - a5)(asazasay)
2. Proof of Theorem 1.2

For a finite graph I" and g € G(I'), the support of g, denoted by supp(g), is defined
as the set of vertices a in I' such that a or a~! appears in a reduced word representing
g. It is known that supp(g) is well-defined.

First we show that a complete bipartite graph embeds into the extension graph of
a path graph.

PROPOSITION 2.1. K,,,, < PE | forn > 2.

Proof. Let ay, ..., as,_1 denote the vertices of P,,_; in this order as in Figure 2(a).

Choose any w € G(Py,_1) such that supp(ay’) = V(Pa,—1) for each i € {1,...,2n—
1}. For instance, we may take w = (ajas - - - agn_1)(ag,—2 - - agaq).

Let T be the subgraph of PZ | induced by

{a17a37 cee 7a2n*1} U {Cﬁlv?ag]7 cee 70’1207171}'

Now we will show that I' is isomorphic to K, ,,, which completes the proof.

For distinct 4,7 € {1,3,5,...,2n — 1}, one has [a;,a;] = 1 and hence [0}, a}] =1
in G(Pa,—1), which implies {a;,a;},{a?,a?} & E(Pf,_,). See Figure 2(b).

Meanwhile, it is well-known by the centralizer theorem of Servatius [12] that, for
a finite graph A and a € V(A), if ¢ € G(A) commutes with a, then each element
of supp(g) commutes with a. Thus, for any i,5 € {1,3,5,...,2n — 1}, one has
[ai,a?] # 1 in G(Py,—1) because supp(a?) = V(Pay—1). Namely {a;,a¥} € E(Pf,_,).
See Figure 2(b). O

Using the above proposition, we prove Theorem 1.2.

Proof of Theorem 1.2. (i) Let k > 2n — 1. Since Py, < Py, we have G(Py,_1) <
G(Py). Since K,,,, < Pf | by Proposition 2.1, we have G(K,,,,) < G(Pa,_1) by the
extension graph theorem [8, Theorem 1.3]. Meanwhile, the condition m < n implies
Ky < Ky, and hence G(K,, ) < G(K,,,,). Therefore G(K,, ) < G(FPy).

Conversely, assume that G(K,,,,) < G(Py).

It is well-known (e.g. [2] and [8, Lemma 2.3]) that, for a finite graph I', the maximum
rank of a free abelian subgroup of A(I") is the clique number of I, i.e. the maximum
number of pairwise adjacent vertices in I'. Since G(I') = A(T), the maximum rank of
a free abelian subgroup of G(I') is the independence number of ', i.e. the maximum
number of pairwise non-adjacent vertices in I'.

Thus the maximum rank of a free abelian subgroup of G(Fy) is [k/2]. Since
G(K,m) contains a free abelian subgroup of rank n, we have [k/2] > n and hence
k>2n—1.
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(ii) Let ¢ > 2n. Choose any k with 2n < k+1 < ¢ (e.g. Kk = ¢ —1). Then
G(Knm) < G(P) by (i), and G(Py) < G(Cy) by [5, Theorem1.4(3)]. Therefore
G(Knm) < G(Cy).

Conversely, assume that G(K,,,,) < G(Cy). Then the proof is similar to (i). More
precisely, the maximum rank of a free abelian subgroup of G(Cy) is |¢/2] that is the
independence number of Cy. Since G(K,,,,) contains a free abelian subgroup of rank
n, we have |¢/2] > n and hence ¢ > 2n. O
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