• Title/Summary/Keyword: compact-open topology

Search Result 15, Processing Time 0.017 seconds

Interval- Valued Fuzzy Minimal Structures and Interval-Valued Fuzzy Minimal Spaces

  • Min, Won-Keun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.202-206
    • /
    • 2008
  • We introduce the concept of interval-valued minimal structure which is an extension of the interval-valued fuzzy topology. And we introduce and study the concepts of IVF m-continuous and several types of compactness on the interval-valued fuzzy m-spaces.

THE TRANSFORMATION GROUPS AND THE ISOMETRY GROUPS

  • Kim, Young-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1989
  • Methods of Riemannian geometry has played an important role in the study of compact transformation groups. Every effective action of a compact Lie group on a differential manifold leaves a Riemannian metric invariant and the study of such actions reduces to the one involving the group of isometries of a Riemannian metric on the manifold which is, a priori, a Lie group under the compact open topology. Once an action of a compact Lie group is given an invariant metric is easily constructed by the averaging method and the Lie group is naturally imbedded in the group of isometries as a Lie subgroup. But usually this invariant metric has more symmetries than those given by the original action. Therefore the first question one may ask is when one can find a Riemannian metric so that the given action coincides with the action of the full group of isometries. This seems to be a difficult question to answer which depends very much on the orbit structure and the group itself. In this paper we give a sufficient condition that a subgroup action of a compact Lie group has an invariant metric which is not invariant under the full action of the group and figure out some aspects of the action and the orbit structure regarding the invariant Riemannian metric. In fact, according to our results, this is possible if there is a larger transformation group, containing the oringnal action and either having larger orbit somewhere or having exactly the same orbit structure but with an orbit on which a Riemannian metric is ivariant under the orginal action of the group and not under that of the larger one. Recently R. Saerens and W. Zame showed that every compact Lie group can be realized as the full group of isometries of Riemannian metric. [SZ] This answers a question closely related to ours but the situation turns out to be quite different in the two problems.

  • PDF

SOFT SOMEWHERE DENSE SETS ON SOFT TOPOLOGICAL SPACES

  • Al-shami, Tareq M.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1341-1356
    • /
    • 2018
  • The author devotes this paper to defining a new class of generalized soft open sets, namely soft somewhere dense sets and to investigating its main features. With the help of examples, we illustrate the relationships between soft somewhere dense sets and some celebrated generalizations of soft open sets, and point out that the soft somewhere dense subsets of a soft hyperconnected space coincide with the non-null soft ${\beta}$-open sets. Also, we give an equivalent condition for the soft csdense sets and verify that every soft set is soft somewhere dense or soft cs-dense. We show that a collection of all soft somewhere dense subsets of a strongly soft hyperconnected space forms a soft filter on the universe set, and this collection with a non-null soft set form a soft topology on the universe set as well. Moreover, we derive some important results such as the property of being a soft somewhere dense set is a soft topological property and the finite product of soft somewhere dense sets is soft somewhere dense. In the end, we point out that the number of soft somewhere dense subsets of infinite soft topological space is infinite, and we present some results which associate soft somewhere dense sets with some soft topological concepts such as soft compact spaces and soft subspaces.

BETWEEN PAIRWISE -α- PERFECT FUNCTIONS AND PAIRWISE -T- α- PERFECT FUNCTIONS

  • ALI A. ATOOM;FERAS BANI-AHMAD
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • Many academics employ various structures to expand topological space, including the idea of topology, as a result of the importance of topological space in analysis and some applications. One of the most notable of the generalizations was the definition of perfect functions in bitopological spaces, which was presented by Ali.A.Atoom and H.Z.Hdeib. We propose the notion of α- pairwise perfect functions in bitopological spaces and define different types of this concept in this study. Pairwise -T - α- perfect functions, pairwise -α-irr-perfect functions, and pairwise -T - α- irr-perfect functions, are all characterized in addition to pairwise -α-perfect functions. We go through their primary characteristics and show how they interact. Finally, under these functions, we introduce the images and inverse images of certain bitopological features. About these concepts, some product theorems have been discovered.

HOMOTOPY PROPERTIES OF map(ΣnℂP2, Sm)

  • Lee, Jin-ho
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.761-790
    • /
    • 2021
  • For given spaces X and Y, let map(X, Y) and map*(X, Y) be the unbased and based mapping spaces from X to Y, equipped with compact-open topology respectively. Then let map(X, Y ; f) and map*(X, Y ; g) be the path component of map(X, Y) containing f and map*(X, Y) containing g, respectively. In this paper, we compute cohomotopy groups of suspended complex plane πn+mnℂP2) for m = 6, 7. Using these results, we classify path components of the spaces map(ΣnℂP2, Sm) up to homotopy equivalence. We also determine the generalized Gottlieb groups Gn(ℂP2, Sm). Finally, we compute homotopy groups of mapping spaces map(ΣnℂP2, Sm; f) for all generators [f] of [ΣnℂP2, Sm], and Gottlieb groups of mapping components containing constant map map(ΣnℂP2, Sm; *).