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HOMOTOPY PROPERTIES OF map(X"CP2,S™)

JIN-HO LEE

ABSTRACT. For given spaces X and Y, let map(X,Y) and map«(X,Y")
be the unbased and based mapping spaces from X to Y, equipped with
compact-open topology respectively. Then let map(X,Y; f) and map« (X,
Y'; g) be the path component of map(X,Y’) containing f and mapx«(X,Y")
containing g, respectively. In this paper, we compute cohomotopy groups
of suspended complex plane 7"+t (S"CP?) for m = 6,7. Using these
results, we classify path components of the spaces map(S™CP?, S™) up
to homotopy equivalence. We also determine the generalized Gottlieb
groups G, (CP2,S™). Finally, we compute homotopy groups of map-
ping spaces map(EX"CP2,S™; f) for all generators [f] of [S"CP2,S™],
and Gottlieb groups of mapping components containing constant map
map(E"CP2, S™; %).

1. Introduction

Let X and Y be based topological spaces. A major object of homotopy
theory is to study [X, Y], the set of homotopy classes of based maps. In general,
if Y is a co-H-group, [X, Y] has a group structure. Let X be the suspension of
X. Since every suspended space XX is co-group, [2X, Y] has group structure.
If ¥X is a sphere S™, [S™, Y] is the n-th homotopy group of Y. On the other
hand, [X,S™] is called the n-th cohomotopy set of X and denoted by 7™ (X).
If X is a co-H-group, the cohomotopy set is a group and called cohomotopy
group. Homotopy groups and cohomotopy groups have been studied by many
authors and are the major object in algebraic topology.

Another major object of homotopy theory is to investigate the set of (un-
based) maps f : X — Y. We denote map(X,Y) to be the set of continuous
maps from X to Y equipped with compact-open topology. Then we write
map(X,Y; f) for the path-component of map(X,Y) containing f. Important
cases are map(X,Y; ), the space of null-homotopic maps and map(X, X;1),
the identity path-component. It is proved that every topological space appears
as a quotient of a paracompact Hausdorff space in a natural way [7]. Thus it
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is important to study path components of mapping spaces to investigate topo-
logical spaces. In general, the mapping space map(X,Y) does not have CW
homotopy type. Even if X and Y are finite CW complexes, map(X,Y’) may
not be of CW homotopy type. By Milnor [16], when X is a compact metric
space and Y is a CW complex, the path components map(X,Y; f) are of CW
homotopy type. Also according to Kahn [9], map(X,Y) is of CW type when X
is a CW complex and Y only has finitely many non-trivial homotopy groups.

Lang proved that if X is a suspended space, then all path components
of map.(X,Y) have the same homotopy type [12, Theorem 2.1]. Whitehead
proved that map(S™, S™; f) is homotopy equivalent to map(S™, S™;0) if and
only if wy has a section, where 0 : S™ — S™ is a constant map [21, Theorem
2.8]. Lupton and Smith proved that

map(X,Y; f) ~ map(X,Y; f +d)

for a CW co-H-space X and any CW complex Y, where d : X — Y is a cyclic
map [10, Theorem 3.10]. Recently, Gatsinzi [2] proved that the dimension of the
rational Gottlieb group of the universal cover map(X, S?"; f) of the function
space map(X, S?"; f) is at least equal to the dimension of f]*(X;(@) under
several assumptions. Lupton and Smith [10] showed that

Grn(map, (X, Y5 %)) = Gu(Y) © Gu(X,Y).
Maruyama and Oshima [13] determined homotopy groups of
map*(SU(3)7 SU(3))7 map*(sp(2>7 Sp(2)) and map*(GQa GQ)

In Section 2, we present some basic knowledge of composition methods [19].
We review a mapping cone sequence and Puppe sequence related to the sus-
pended complex projective plane and discuss the concept of cyclic maps and
its properties. Also we recall the Toda brackets and their properties related to
suspended complex planes.

In Sections 3 and 4, we compute 7™ (X" **CP?) for k = 6,7. As a result, we
obtain the results (see Tables 1, 2).

In Section 5, we computer homotopy groups of map.(CP% CP2, %) by the
result of Sections 3, 4 and [8].

In Section 6, we apply our computation to the classification of path compo-
nents of mapping spaces up to homotopy equivalent and evaluation fibrations
up to fibre homotopy equivalent. Hansen proved that the evaluation fibration
wy (X, XY f) — XY has a section if and only if [f,idsy] = 0, where [, ]
is the generalized Whitehead product [6]. Lupton and Smith proved that the
following statements are all equivalent: (1) amap f: X — Y is cyclic, (2) wy
has a section, and (3) two fibrations wy and wy are fiber homotopy equivalent,
where 0 is a constant map [10]. Also, we apply our results to the formulation
of generalized Gottlieb groups from suspended complex plane to sphere and
Gottlieb groups of path components of constant map.

We use the notation of [8,19] freely.
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TABLE 1.
casen 2 3 4 5 6 7
T (ESnTCP?) || 2415 [2+3 | 8+24+32+5[4+9|42+9+3[4+3
casen 8 9 10 11 n>12
T (XnTOCP?) [[42+3%[4+3 2+3 2+3 2
TABLE 2.
case n 2 3 4 5 6
(2" TTCP?) 2+3 22 421 23 442463 [44+22+63
case n 7 8 9 10 11
(X CP?) 8 + 22 8+22 | 8+22|c0+8+2+63| 8+2+63
case n 12 n>13
(S FTCP?) || oo +8+2+63 | 8+2+63

where the integer n denotes the cyclic group Z,, oo denotes the groups of
integers Z, “+” denotes the direct sum of abelian groups, and (s)* denotes the
k-times direct sum of Z,.

2. Preliminaries

The complex projective plane CP? is defined by the mapping cone S?U,, e,
where 1, : 83 — 52 is the Hopf fibering. Consider a Puppe sequence
g3 12, 62 L cp? B, g4 My g3 X,
where i : §2 — CP? is the inclusion map, p : CP? — S* is the collapsing map

of S? to a point *, and 1, = L*"2n, for k > 2. Then, we have a long exact
sequence of homotopy sets

Toss(8™) 5% o a(8™) 22 [snCP?, 5™

% 7Tn+2(Sm) 7771—+2> 7Tn+3(Sm).

Therefore, we have the short exact sequence

(2.1) 0 — Cokern;, , 5 =, [x"CP?% 8™ R2AAN Kern,, o — 0.

When G is an abelian group and p > 2 is a prime number, we denote the
p-primary parts of G by G,).
For p > 3, we have an isomorphism

[2"CP?, 8]) = T 12(S%) () © Tnsa(S") )

since m,41(S™) is of order 2 for n > 3 [19, Proposition 5.1].
It is well known that the Hopf fibrations ny : S — S2, vy : S = 8%, and
og : 815 — S8 induce isomorphisms

(2.2) [X, S?’} — [X,Sz], =120,
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(2.3) [X,8% @ [2X,S8"] = [£X,5Y, (,B) = Sa+wv,00

(2.4) (X, 87 @ [2X,S] = [£X,5%], (,B8) = Za+ogof

Consider elements « € [Y,Z], € [X,Y], and v € [W, X] which satisfy
aoff=0and Boy=0. Let Cs be the mapping cone of 3, and i : Y — Cjg,
p: Cy — XX be the inclusion and the shrinking map, respectively. We denote
an extension of « satisfying i*(@) = a by @ € [Cs, Z], and a coextension of
satisfying p.(7) = Xv by 7 € [ZW, Cg] [19].

We recall some relations between (co)extensions and Toda brackets [19].
Proposition 1. Let o € [Y,Z], 8 € [X,Y], and v € [W, X] be elements
which satisfy a0 =0 and Boy =0. Let {a, 8,7} be the Toda bracket and
p: Cy — W be the shrinking map, respectively. Then, we have

(b) ao B e{a,B,7}op.

The following is useful for determining 2-primary parts of the class [X"CP?,
S™] [8].

Proposition 2. Let ic : CP? — CP? and 14 : S* — S‘:{)e identity maps on
CP? and S*, respectively. Let 213 : XCP? — S® and 2u4 : S° — LCP? be
extension and coextension of 2t3 and 2u4, respectively. Then we have

2%uc = i 0 2u3 + 204 0 Sp
on [ZCP?% ¥CP?).

Here, we recall the concept of a cyclic map and Gottlieb groups of a space
X, denoted by G,,(X) [4,20].

Definition 1. A map f:Y — X is cyclic if thereisamap F : X XY — X,
called an affiliated map of f, such that the diagram homotopy commutative:

XxY ul X x X
] X
xvy —Y _xvx.

Let G(Y,X) denote the set of all homotopy classes of cyclic maps from Y
to X. Varadarajan showed that G(Y, X) has a group structure for any co-H-
space Y [20]. For an integer 7 > 1, the set of homotopy classes of cyclic maps
"X — Y we denote by G,,(X,Y), and call the n-th generalized Gottlieb group
of (X,Y). When Y = 5", G(Y, X) = G,(X) is the n-th Gottlieb group of X.
In [4], Gottlieb introduced and studied the evaluation subgroups

G (X) = wi(m,(map(X, X; 1)),

where wy : m, (map(X, X;1)) = 7,(X). Note that the G,,(X) can alternatively
be described as homotopy classes of maps f : S™ — X such that (f|1) :
S™V X — X admits an extension F': S x X — X up to homotopy.
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3. [E"T6CP2, 8™ for n > 2

In this section, we compute the n-th cohomotopy group of (n + 6)-fold sus-
pended complex projective plane by using (2.1).

Proposition 3. (1) [X8CP?,5?] = Za{ns o u3 0 X8p} & Zy5.
(2) [B°CP?, 83 = Zo{e' o X%} @ Zs.
(3) [X10CP?, 5% = Zg{vs 00’ o X1} @ Zo{Ee' 0 1} @ 72 @ Zs.
(4) [Z1ICP?, 5% = Zy{vs 0 05 0 Slp} & Zo.

Proof. (1) Consider the following short exact sequence

0 — Cokerni; =, [Z8CP?, 57 =, Kernj, — 0,
where n}; : 711(S?) — m12(S?) or, more precisely
My La{ 0 €3} — Z3{n3 0 €a,m2 0 p3}
and n}, : 710(S?) — m11(5?) or, more precisely
Mo : Z1s — ZLa.

Then we have
Cokernyy = Zo{n2 o p3}
and
Kernjy = Z15s
by [19, (7.5)]. Now we have a short exact sequence

57, iy8p2 @2y =i
0 — Za{ng o us} —— [X°CP*, 5% =—— Z15 — 0.
Thus we have
[E8CP?, 5% = Zo{no o p3 0 B°p} @ Zss.
(2) Consider the following short exact sequence
9, * 9 %
0 — Cokerniy v, [x9CP?, 5% RN Kerny; — 0,
where 17y : m12(S%) — 713(S®) or, more precisely
M Zi{ps; 3 0 €4} = Za{e'} © Lo{nz o pa} © Zs
and n}; : 711(S%) — m12(S?) or, more precisely
Myt Zofesy — Zi{ps, 13 0 €4}

Then we have 15 (113) = n3 0 f1a , Nf2(1130€4) = N3 0eg0M2 = 13 05 = 2¢’ and
11 (e3) = n3 0 eq by [18, (2.2)], [19, Lemma 6.6, (7.5)]. Thus we have

Cokernjy = Zo{e'} ® 73

and
Kernj; = 0.
Now we have a short exact sequence

9 % . o
0= Zole'y @ Zs 225 20CP?, 5% 255 0,
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Thus we have
[29CP?, 8% = Zy{c' 0 2p} @ Zs.
(3) Consider the following short exact sequence
« I 10 p2 g4y B0 x
0 — Cokernjy —— [X"CP?, %] =—— Kernj, — 0,
where 73 : m13(S*) — 714(S*) or, more precisely
My : La{vi, pa,moesy — Ls{vao o'y ® Za{Ee"} ® Lo{ni o us} © 23 ® s
and n, : m12(S*) — m13(S*) or, more precisely
My Zo{ea} — Z5{v, pa,ma 0 €5}

Then we have 7j3(v§) = 0, ni3(1a) = na 0 s, Ni3(na0€5) = 17 0e6 = 2E€” and
N55(€4) = ma 0 €5 by [18, (2.2)], [19, Lemma 6.6, (5.9), (7.5)]. Thus we have

Cokerniy = Zs{vs 00’} ® Zo{Ec'} ® 73 @ Zs
and
Kernyy, = 0.
Now we have a short exact sequence
0= Zg{vaoo') @ Zo{Ee'} @ 72 @ Zs oty (2100 P2, 5% 2270 0,
Thus we have
[E1CP?, 5% = Zsg{vs 0 0’ 0 X'} & Zo{Ee' 0 D} @ Z3 @ Zs.

(4) Consider the following short exact sequence

« I i1p2 g5y U x
0 — Cokernjy —— [ CP?,S°] =—— Kernjs — 0,
where 0}, : m14(S°) — m15(S®) or, more precisely
M+ Lo{v3, s, s 0 €6} — Ls{vs 0 08} © Lo{ns o 16} @ Loy
and 5 : T13(S°) — m14(S®) or, more precisely
N3 : Zofes} — Z{v3, s, 15 0 €6}

Then we have 17, (v3) = 0, 174 (15) =115 © 16, 1{4(15 0 €6) =13 0 67 = 2E%€’ =
2(2us00g) = 4vs ooy and n5(e5) = 15 0g6 by [18, (2.2)], [19, Lemma 6.6, (5.9),
(7.10)]. Thus we have

Cokerny, = Zy{vs o og} b Zg
and

Kernj; = 0.

Now we have a short exact sequence

lei*

11, %
0— Z4{l/5 o 0'8} ® Zg Z—p) [211CP2,S5] = 0.

Thus we have
[ZCP?, 55 = Zy{vs 0 05 0 B'ip} @ Zo. O
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Proposition 4. (1) [X13CP?,87] = Zy{v; 0 019 0 B13p} @ Z3.
(2) [ElZCPZ, 56] = Zi{l/6 009 O 212]),%} D Zg D Z3.
Proof. (1) Consider the following short exact sequence

18 13 o o7y D18
0 — Cokernjg —— [E°CP=,S"] =—— Kernjs — 0,

where 77 : m16(S7) = m17(S7) or, more precisely
M6 : La{o' o nty, va, a0 es} — Ls{vr 0 010} @ Lo{nr o ps} @ Zs
and 5 : m15(S7) — m16(ST) or, more precisely
s« Ly{o' oma, Ur e} — Ly{o o iy, v7, pur,m7 o s}
Then we have njg(c’on?,) = o’ oniy = 0/ o (4114) = 4(0" ov14) = 4(z170070) =
4(vg0a10) where @ odd, nis(v7) = 0, 1{s(17) = 1170 15, NiG(N7 0€8) = 17 09 =
2E%(B%e") = 2E%(2v5 0 08) = 4v7 0 010 , 0i5(0" 0 1a) = 0" o iy, ni5(T7) =17
and nj5(e7) = nroeg by [18, (2.2)], [19, (5.5), (5.9), (7.10), (7.19), Lemma 6.6].
Thus we have
Cokernfﬁ = Z4{l/7 o 0'10} D Zg
and
Kernj; = 0.

Now we have a short exact sequence

13, 13
0— Z4{V7 9} 0'10} D Z3 Z—p) [213CP2,S7] Z—Z) 0.

Thus we have
[ElBCPQ, 57] = Z4{V7 © 010 © le}p} (&) Zg.
(2) Consider the following short exact sequence

12, % 12 %
0 — Cokernis zr, [pt2CcP?, 59 z Kern;y, — 0,

where 0}y : m15(S%) — m16(S®) or, more precisely
nis : Z3{vg, e, me 0 €7} — Ze{ve 0 09} ® Zo{ng o pr} ® Zo
and nj, : 14(S%) — m15(S°) or, more precisely
Mia: Ze{Ve} @ Lo{ec} © Ly — Z3{vg, o, 16 0 €7}

Then we have i5(v2) = 0, 1 (16) = moopir, nis(ms0er) = rocs = 2E(E%') =
2B(2v5 0 05) = 4vg 0 09 ni4(Vs) = g and niy(es) = 16 0 7 by [18, (2.2)],
[19, Lemma 6.6, 6.3, (5.9), (7.10)]. Thus we have

Cokernﬁ = Z4{V6 ] 0'9} ©® Zg

and
Kernh = Z4{2ﬁ6} + Zg.

So we have a short exact sequence

12 % .k
0 = Za{vs 0 o9} & Zg = [212CP2, 59 2205 7, {256} @ Zs — 0.
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We consider a commutative diagram:

12 % -k
0 —= Zu{vg 0 09} ——% [NI12CP?, §] (o) > 7, {26} —= 0

lEl \LEQ l23
13, %

0 —> Zy{vr o010} i; [213(:1327 57](2)2121'* 0 0

Since ¥; and X'3p* are isomorphisms, ¥'2p* has left inverse. This implies that
the first row splits. Thus we have

[212C P2, 8% = Z2{vs 0 09 0 12, 206} @ Zo @ Zs. 0

Proposition 5. (1) [S14CP?, 58] = Z2{og o v15 0 B14p, 15 0 011 0 Lp} @ Z3.
(2) [EISCP27 59] = Z4{O’9 O Vi © 215]7} (&) Zg.
(3) [216CP27 Slo] = ZQ{UIO o Vi7 O 216])} D Z3.
(4) [217(CP2, Sll] = Zg{O’ll o118 © 217])} D Zg.
(5) [X"FTOCP?, S"] = Z3{B1(n) o X" Cp} for n > 12.

Proof. (1) Consider the following short exact sequence
14,
P

14 %
0 — Cokerny, v, [ptcp?, 58 RN Kernjs — 0,

where 77, : m17(S%) — 715(S®) or, more precisely

7+ Z3{os onis, (Eo') o nis, 18, s, ms 0 €0} = Zi{og o vis,vg 0 011} @ Zo{ng o puo} & Z3
and g : T16(S®) — m17(S®) or, more precisely

N6 : Zalos oms, (Eo’) onis, Us,es} — Zs{os o nis, (Ec’) o nis, Vs, s, s © €9}
Then we have 7i-(0g 0 n?5) = o3 o (dv15) = 4(0s o v15), N5 ((Eo’) o 125) =
E(ni,(c'on?,)) = 4vgoony, ni7(V3) = 0, niz(us) = nsopg, ni7(ng0eg) = 4vgooy,
Nis(08 © Mms) = 08 0 Nis, Ni6((Ea’) o ms) = (Eo’) o nis, nig(vs) = v§ and

Nis(es) = ms o g9 by [18, (2.2)], [19, (5.5), (5.9), (7.10), (7.19), Lemma 6.6].
Thus we have

Cokern}; = Zi{os o v15,v5 0 011} B Z3
and
Kernjg = 0.

So we have a short exact sequence
14 * 14 -
0— Zi{a'g O V15,8 O 0'11} EBZ% E—p) [214(CP2758] Z—Z) 0.
Thus we have
[RMCP? S8 = Z2{og 0 115 0 Mp, 15 0 011 0 BMp} @ Z2.

(2) Consider the following short exact sequence

*

15 15 %
0 — Cokernly —2 [E5CP?, §9 25 Kern; — 0,
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where n}g : m15(SY) — m19(S?) or, more precisely
Ms 23{09 © 77%6’ VS:NQ:UQ ocio} = Zs{og o vie} ® Za{ng o 1o} © Zs
and n}, : m17(S%) — m18(S?) or, more precisely
N7+ Za{og 0 e, Vg, €0} = Z{ag o s, V5, 19, M9 © €10}

Then we have njg(ag o 7is) = 409 o vis, Mis(vs) = 0, Nis(e) = 79 © pu10,
Mis(19 © €10) = 4vg 0 012 = 0, 1i7(09 0 116) = 09 © i, Mj7(Po) = v§ by and
1 (89) = m9 0 £10 by [18, (2.2)], [19, (5.5), (5.9), (7.10), (7.19), (7.20), Lemma
5.14, 6.6,]. Thus we have

Cokernyg = Zs{og ov16} & Zs
and
Kernj; = 0.
Now we have a short exact sequence
Zl5p* 15 2 9 2151-*
0—>Z4{090V16}@Z3 e [E CpP ,S ] = 0.
Thus we have
[B1°CP?, 8% = Za{og 0 v16 0 B'°p} & Zs.
(3) Consider the following short exact sequence
16, * 16 %

0 — Cokernly —2 [216CP2, $10] 255 Kerply — 0,
where 0} : T19(S10) — ma0(S?) or, more precisely
Nio : Z{P(121)} ® Z3{viy, 0, mo o €11} = Za{o10 0 117} @ Zo{mo 0 pa1} @ Zs
and njg : m15(S'?) — m19(S5Y) or, more precisely

s : Z3{10, €10} — Z{A(21)} ® Z3 {170, 10, 1o © €12}

Then we have njg(P(t21)) = P(n21) = 2010 © v17, 1ie(Viy) = 0, nig(p10) =
N9 © H10s Mg (M0 0 €11) = dvig 0013 = 0, Nig(T10) = 13y and nis(10) = Moo €11
by [18, (2.2)], [19, (5.9),(7.5),(7.10),(7.21), Lemma 6.3]. Thus we have

Cokernty = Zo{o19 o 17} & Z3
and
Kernjg = 0.
Now we have a short exact sequence
0 = Zo{omo 0 117} @ Zg s [15C P2, 510) 2275 ¢
Thus we have
[(216CP?, 510 = Zy{o19 0 117 0 21} @ Zs.

(4) Consider the following short exact sequence

17 % 17 %
0 — Cokerny —2 [217CP2, S =255 Kernly — 0,
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where 0 : T20(S) — 71 (S) or, more precisely
N30 : Zg{”i)’punﬂhl oc1a} — Z%{Uu ov18, M1 0 pi2} D Z3
and 77y : T19(SM) — ma(S11) or, more precisely
Mo : Za{Tin,en} = Z3{viy, par, i 0 €12}

Then we have 13, (v{;) = 0, n59(11) = M100 p11, M3 (M1 0€12) = dv110014 =0,
nTQ(ﬁll) = V?l and 77;9(511) = M10°¢€12 by [187 (22)]3 [197 (59)7 (75)7 (710)a
Lemma 6.3]. Thus we have

Cokernyy = Zo{o11 0 v18} © Zs

and
Kernjy = 0.
Now we have a short exact sequence

S 17~ p2 o1y BN
0—)Zg{0’11 OVls}EBZ;g —_— [E cpr=, S ] — 0.
Thus we have
[(2YCP?, SY) = Zy{o11 o 15 0 2V p) @ Zs.

(5) Consider the following short exact sequence

lep* 18 2 12 218/’:*
0 — Cokerns; —— [X°CP*, 5] —— Kerny, — 0,
where 03, : m21(S2) — ma2(S1?) or, more precisely

M1+ Z3{Vis, 12, ma 0 €13} — Zo{mz o pas} ® Zs

and 73, : m20(S'?) — m21(S1?) or, more precisely
3o : Z3{V12, €12} — Z3{viy, a2, m2 0 €13}

Then we have 13, (v1;) = 0, 031 (12) = M2 o pus, 131 (M20€13) = 4vi20015 = 0,
n3o(P12) = V35 and n3g(e12) = mi2 0 €13 by [18, (2.2)], [19, (5.9), (7.5), (7.10),
Lemma 6.3]. Thus we have
Cokerny, = Zs
and
Kerns, = 0.
Now we have a short exact sequence

18, 18 %
0 Zy —2 [218CP2, §12] 255 0.

Thus we have
[S8CP? 82 = Z3{B1(12) o Z18pl.
By the Freudenthal suspension theorem, the suspension homomorphism
2 [E"HOCP?, 8 — [Z"HTCP?, S
is an isomorphism for n > 12. Thus we have
[EHOCP?, 8" = Zs{B1(n) o 2" F6p). O



HOMOTOPY PROPERTIES OF map(X"CP?, S™) 771

From the above propositions, we have the following theorem.

Theorem 1. For n > 2, the n-th cohomotopy group of (n + 6)-fold suspended
complex projective plane has the following group structure.

case n 2 3 4 5 6 7
X" FeCP2, 8" [ 2+15 [2+3[8+2+32+5[4+9[42+9+3[4+3

casen 8 9 10 11 n>12
[EnFT6CP2, 8" |[42+3%2 [ 4+3 2+3 2+3 2

4. [Z"t7CP2,8"] for n > 2

In this section, we compute the n-th cohomotopy groups of (n + 7)-fold
suspended complex projective plane by using (2.1).

Proposition 6. (1) [X9CP?,8?] = Zy{na0e’' o X%} & Zs.
(2) [B1CP?, 53] = Z2{1/ o X%, e3 0111 0 S0} © Zs & Zs.

Proof. (1) Consider the following short exact sequence

0 — Cokernyy 29—p*> [RYCP? % =, Kernj; — 0,
where 77y : m12(5?%) — 713(S?) or, more precisely
My« Zy{1 0 eaymz 0 pz} — Zafnz 0 €'Y @ Zi{n5 o pa} @ Zs
and 7}, : 711(S%) — m12(S5?) or, more precisely
0y Za{nz o es} — Z3{n3 0 €4,1 0 s}

Then we have 775 (13 0 €4) = 12 093 05 = n2 0 (26') = 2(nz 0 €'), M5 (112 © p3) =
N3 o pug, i (N2 0 €3) = N3 o g4 by [18, (2.2)], [19, (7.5), (7.10)]. Thus we have

Cokerryly = Za{m 0 '} & Zs
and
Kerny; = 0.
Now we have a short exact sequence

/ 2" 9 p2 @2 20T
0 — Zo{np o'} ® Z3 = [X°CP? 5% = 0.

Thus we have
[29CP?, 5% = Zo{na o' 0 ¥} & Zs.
(2) Consider the following short exact sequence
« " 10 p2 g3y B0 «
0 — Cokernj; —— [XCP?4, S°] =—— Kernjy — 0,
where 775 : T13(S%) — 714(S®) or, more precisely

Nt : Za{e'} & Zo{ns o pa} — Za{p'} & Z3{ez 0111,V 06} ® Zs & Zr
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and n}, : 711(S%) — m12(S5?) or, more precisely
M« Z3{ps,n3 0 €4} — Za{e'} @ Zo{nz o pa}.

Then we have nj5(e’) = v/ o e, ni3(ns 0 pa) = 24", niy(pus) = 13 0 pa, and
Wio(n3 0 1) = 12 0 e5 = 2¢' by [18, (2.2)], [19, (7.7), (7.10), (7.12)]. Thus we
have
Cokernjy = Z2{p/ e3 011} © Z3 © Zy
and
Kernjy = 0.

Now we have a short exact sequence
27 S 10 p2 @37 210
Thus we have

[B10CP?, 5% = Z3{y 0 £p,e5 0 111 0 510} @ Z3 @ Zr. O
Proposition 7.
[ZHMCP?, 8% = Zy{vi 0 g10(C)}
@ ZIHEW o XMp,eq0v1p 0 XMp vy 077 0 BHpY @ Zoy.
There is a relation vy o e7 0 XMp = 2v3 0 2g10(C).

Proof. Consider the following short exact sequence

1, %

0 — Cokerryf, =25 [£1CP2, 5% 2250 Keryty — 0,
where 0}, : m14(S*) — m15(5*) or, more precisely
Nyt Zs{va o0’} & Ly{Ee"} & Lo{na o s} & L35 & Zs —
Zu{Eu'} @ Z5{Ep vy 0 0’ onig,va 0 Ur, vy 07,64 0 V1o, (EV) 0 7} @ 73 @ Zs
and 775 : m13(S*) — m14(S*) or, more precisely,
Nis t Z3{vs, pa, a0 esy — Zg{vy 00’} © Zy{Ee'} @ Zo{ny o s} ® 73 © Zs.

Then we have 7,(vs 0 ') = w4 0 0 o mua, nis(Be') = B(' 0 ms) = E(' o

g6) = (EV') oer, nis(ma o ps) = E(n3 o ps) = EQ2u') = 2B, ni3(v§) = 0,
Mi3(1a) = na © ps and 1i3(1a 0 5) = E(13 0 £5) = E(2¢') = 2E¢' by [18, (2.2)],
[19, (5.9), (7.7), (7.10), (7.12)]. Thus we have
Cokernty = Za{EW , vy oUr, vy 067,640 v12} ® L3 D Zs
and
Kernty = Zo{vi}.
So we have a short exact sequence
0 — Z3{Ep ,vsoVr,vs 067,640 12} ® L3 & Ls

11« - )
0 sucep?, 54 2 7,081 S o.
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By [8, Proposition 3.3, 3.6], we have v2 02111 = e50%%p. This implies a relation
202 0 g10(C) = v} 02113 = vy 0 g7 0 Bip.
Thus we have
[SMCP?, 8% = Zy{v} 0 g10(C)}

® Z3{Ep oS p,esoviz 0B p vy oz o S pt € Zoy. O

Proposition 8.
[212CP?, 5% = Z4{(s 0 2'2p}
@© Z3{vs 0Ug 0 212p, 12 0 g11(C)} © Zy & Zo.

Proof. Consider the following short exact sequence

0— Cokern15 [Elz(CP2 S°] =, Kerny, — 0,
where 0}y : m15(S°) — m16(S°) or, more precisely
Nis : Zs{vs 0 08} ® Za{ns o pe} ® Zg — Zs{(5} B Z3{vs 0 Us,v5 08} ® Zy B Zg
and nj, : m14(S®) = m15(S°) or, more precisely
Mg Z3{V3, s, ms 0 g6} — Zs{vs 0 08} & Zo{ns o pe} & L.
Then we have 1)j5(v5 0 05) = v5 0 €8, 15 (15 © p6) = 4Cs, N14(¥3) = 0, N7 (p

5) =
N5 o pig and 174(ns 0 €6) = 4(vs 0 0g) by [18, (2.2)], [19, p. 152, (5.9), (7.10),
(7.14)]. Thus we have

Cokernys = Za{Cs} @ Zo{vs oUs} @ Z7 ® Zg
and
Kernt, = Zo{vi}.
So we have a short exact sequence
0 = Za{Gs} @ Zo{vs 0?8} @ Z? ® Zy

' p

(4.1) os
Z s2ep?, §5 20 2, (03) 0.
Consider an EHP sequence

[213cp?, 8% & (ptiep?, sY L

L m12cp?, 59 2 [20cp?, 54,

where [[213CP2, 89] = Z4{l/9 Oglg(C)}@Zg{vg oEl3p}, [le(CPQ, 54] = Z4{I/Z o
910 YOZI{ Ep/ oX 1 p, eqov1908 p, vyovr08p) ) [B12C P2, SO = Zig{ogoXt?p}
and [S19CP?%, 54 = Zg{vy 0 0’ 0 2109} & Zy{Ee' 0 1%} @ Z3 @ Zs. Then we
have

[ZIQ(CPQ, 55]

A(vg 0 g12(C)) = 2v3 0 g10(C),
A(Tg 0o 213p) = g4 0 v 8 p
and
A(og o B1%p) = (zv4 00’ £ Ee’) 0o 210,
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where x is odd. Then we have a short exact sequence
0— Z%{Vz 0 g10(C), Eﬂl o Elva €40V120 lep, vgovo Ellp}
Ly m12cp?, 55 2 7,{809 0 5'2p} — 0.

By [19, Lemma 6.7, (7.14)], we have H((5) = 809 and E?u’ = 2(5. Thus we
obtain

[E12CP?, 8% = Za{(s 0 £?p} @ Z3{vs 0 s 0 B?p, 1 0 g1 (C)}- O

Proposition 9.

[SPCP?, 9 = Zy{Go 0 T17p)

® Z3{V6 o v14 0 X13p, 12 0 g12(C)} @ Zgs.
Proof. Consider the following short exact sequence
0 — Cokernig Efgl [(213CP? S0 =, Kernj; — 0,
where 4 : T16(5%) — m17(S®) or, more precisely
i : Ze{ve 0 09} & Zofne o v}y ® Zo — Ls{(e} & Za{Vs 0 114} © Ly & Lg

and 75 : m15(S%) — m16(S°) or, more precisely

s+ Za{vg pis,m6 © €7} = Lg{vs 0 a9} ® Lo{ns o pir} ® Zy.

Then we have 77?6(”6 009) = Vg 0€g = 2Ug 0 V14, 771‘6(776 OM?) = 4(& "7>1k5(yg) =0,

115 (1) = 6 © p7 and iz (ne oe7) = 115 0cs = 4(vg 0 09) by [18, (2.2)], [19, p. 70,
p. 152, (5.9), (7.10), (7.14)]. Thus we have

Cokernjg = Zs{Cs} ® Z2{Vg o v14} B Z7 & Zg
and
Kernts = Zy{vg}.
Now we have a short exact sequence
_ S 13 p2 o6y T 3
0— Zy{(s} ® Zo{Vgov14} ® L7y & Ly —— [L°CP=,5°] —— Zo{vg} — 0.
Thus we have a commutative diagram:

12 * Lk
0 —> Z4{Cs) @ Zofvs 0 Ts) s [D12CP2, 5] 25 7o {13} —> 0

izl zzl zgi
13 % 13 ;%
OHZZL{CG}@ZQ{ﬁG OV14}2$ [213(CP2756] EHZZQ{VQ} HO

Since the first row is split and X3 is an isomorphism, the second row also split.

[(E13CP?, 8% = Z4{(s 0 B"p} ® Z3{W6 0 v14 0 £'%p, 1§ 0 g12(C)} @ Z7y @ Zy.
O

Lemma 1.
[SMCP?,57)(3) = [E°CP?, 8% (5) = [S1°CP?, 5% y).
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Proof. By (2.4) and Proposition 3.2 of [8], we have
[xHCp?, 87 = [215CP?, S8
Consider the following EHP sequence
[R17CP?, 575 = [£1°CP2, 5% 5) 2 [B19CP?, 5% o)
A, [S15CP2, 575y 25 [EMCP?, 5% ),
where [S1TCP?, §17] = 0 [8, Proposition 3.2], [S'CP?, 7] o) = Zy{r1705p}
8, Proposition 3.1] and [S'CP?, S8 = Z2{og o v15 0 Z'p, v 0 011 0 THp
2 4

by Proposition 5. By exactness we have E : [S°CP?, 58] ) — [S1°CP?, 575
is injective. By (7.19) of [19] we have

A(v17 0 Bp) = A7) 0 BMp = 205 o 115 0 Bp — 215 0 0y 1 0 Bp,
where 7 is odd. Thus A : [EwCPQ,S’”](g) — [214(CP2,58](2) is injective, so

that E : [Z1PCP?% S8 — [S16CP?, S?] is surjective. Therefore the homomor-
phism E : [S1CP?, $%](5) — [S16CP?, 5% ) is an isomorphism. O

Proposition 10. (A) [SYCP? S7] = Zg{o' on?, + nroeg} ® Z3{v7 o 115 0
SHp,v2 0 g13(C)}.
Relation: 20" o n?, + 17 0o eg = aly o Lp for a odd.

(B) [X1°CP?, 58] = Zg{(E0o’) o n3s + 1g © €9 }DZ3{Vgor16021%p, 120g14(C)}.
Relation: 2(Ec’) o n? + ng 0 g9 = als o X°p for a odd.

(C) [Elﬁ(cpz, Sg] = Zg{m} &) Z%{vg o V7o Zlﬁp, Vg o 915(C)}
Relation: 279 6219 = aly o X'%p for a odd.

Proof. (A) Consider the following short exact sequence

14 14 .
0 — Cokerny, o, [(xHMCP? ST z Kernjs — 0,

where 77, : m17(S7) — m15(S7) or, more precisely
iz Ls{vr o 010} @ Zo{ng o pst ® Zs — Zs{(r} & Zo{Ur o vis} © Zr © Zg
and 7} : m16(ST) — m17(S7) or, more precisely
M6 : La{o' oty vi, pr, e 0 es} — Ls{vg 0 010} @ Lo{ng o ps} @ Ls.

Then we have nj;(v7 0 010) = v7 0 €10, Ni7(17 © pg) = 4¢s, Nig(0’ 0 Niy) =
o'oni, =0’ odvyy = 4o’ ovyy = A(vr0010), Nie(V2) = 0, 56 (17) = 07 0 pg and
ite(nrocs) = A(vy 0 010) by [18, (2.2)], [19, p. 152, (5.5), (7.10), (7.14), (7.19)].
Thus we have

Cokerny; = Zs{Cr} ® Zo{U7 o115} ® Zr © Zg

and
Kernjg = Z3{v7,0" o1ty + 17 0 es}.
Thus we have a short exact sequence

14 =
0 — Zy{(r} ® Zo{U7 o vi5} @ Zs3 RN [xHcP?, 8T
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Zoy{vz, o' omiy +mroest — 0.

(B) Consider the following short exact sequence

PP 15 p2 o8 B0
0 — Cokernjy —— [X°CP?4, S°] =—— Kernj; — 0,

where 775 : T18(S%) — m19(5%),
nis : Zi{osovis,vs0011} @ Zo{nsoug} ®Z3 — Zs{(s} ® Za{Vsovis} B Zr DLy
and 'Iﬁ7 : 7T17(SS) — 718(58),
iy Za{os o nis, (Eo') o nis, g, g, ns © €9} — Zi{0os 0 w15, vg 0 011} ® Za{ns o o} & Z3.
Then we have njg(csovis) =0, njg(vs0o11) = vgooi10ms = vgom ooz =0,
Mis(11s © f19) = 4Cs, ni7(0s 0 Mi5) = 05 0 N5 = 08 0 dvi5 = dog o vi5, N7 ((Eo’) o
Nis) = 4vg 0 011, N7 (13) = 0, ni7(1s) = 18 © po and nf,(ng 0 £9) = 4(vg 0 o11)
by [18, (2.2)], [19, Lemma 6.4, (5.9), (7.5), (7.10), (7.14)]. Thus we have

Cokernijg = Z4{(s} ® Zo{Vs o 16} © Z7 D Zy.
and

Kerni; = Z5{1§, (Ea") o nis + ns o e}

Thus we have a short exact sequence

15, %
0 = Z4{Cs} ® Zo{Ts 0 116} ® Zy ® Zg ——2 [S1°CP?, S

%" o 3 / 2
—— Zy{vg, (Eo") omis +ns oeg} — 0.

(C) Consider the following short exact sequence
lﬁp*

16 ;%
0 — Cokernyy P, [(2CP? 59 RREAN Kernjs — 0,
where 77 : T19(S?) — m20(S°) or, more precisely
Mg : Zg{og 016} @ Za{ng o p1o} ® Zs — Zg{(s} ® Z2{vs o vi6} ® Z7 & Zg
and njg : T18(S?) — m19(S?) or, more precisely
Nis 1 Z3{o9 o mig, v, po,me 0 €10} — Zg{og 0 116} D Za{mg o p1o} ® Zs.
Then we have 77q(09 0 v16) = 0, nig(n9 © f110) = 4Co, Nig(09 0 Nig) = 09 0 N¥s =
o9odvis = dogovis, Nis(v5) = 0, Nis(1e) = neopio and nig(neceio) = 4(ryoor2)
by [18, (2.2)], [19, Lemma 6.4, (5.5), (5.9), (7.5), (7.10), (7.14)]. Thus we have
Cokernty = Zs{Co} ® Zo{Ug o v17} ® Ly ® Zgy

and

Kernjs = Z3{vg,m9 0 €10}
Thus we have a short exact sequence

16, %
0 — Za{Co} ® Zo{Tg 0o v17} & Z7 ® ZLyg =7, [zlecp?, 87

Elﬁi* 2 3
» Zy{vg,mgoein} — 0.
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In the proof of [Y1°CP?, S8, there is an extension (Eo’)on?, +ngoeg €
[L15CP?, S8 of (Ea’) onis + ng 0 €9. By [19, Lemma 5.14, (2.1)] we have

E((EU/) © 77%5) = (EZU/) © 77%6 = (209) 0 n%ﬁ =090 (277%(5) =0.

Thus we obtain

E((Eo’) o5 +ns o €9) =Ty 0 E1p-
This implies that 279 6 €19 = 2t9 0 g 0 €19 by [19, (2.1)]. By [19, Proposition
1.9, Lemma 9.1] we have

219079 0 210 € {2t9, 1M90€10, M8 }oX'p 3 (goX'%p mod 2(goX'%p, Tgory705'%p

that is,
2M5 0210 = aly 0 % mod g o vy7 0 Bi0p
for @ odd. Since 2(v3 o 715) = 2(vé o Eviy) = (2v3) o 5 = 0 by [19, (2.1)],
v3 o g5 is of order 2.
Thus we have

[BCP?, 5% = Zg{ngoe10} ® Z3{Tg o 117 0 2'%p, 13 0 g15(C)} & Z7 © Zy.
By Lemma 1, we have
[(RHMCP?,87) = Zg{o' on?, + 17 0 eg} BLE{Trov1508 4, 120 913(C)} BZ7 B Zg
and
[E1°CP?, 8% = Zg{(Eo’) o5 + mg 0 €9} @ Z5{Vs 0 v16 0 £'°p, 1§ 0 g14(C)} & Z7 & Zg.
d

Proposition 11. (1) [S17CP?, S0 = Z{P(121)} ® Zs{Mio 011} ® Za{v3y 0
U6} @ Ze3.-
(2) [B18CP?,SYM] = Zg{m10e12} D Zo{v? o V17 } B Zps.
(3) [219(CP2, 312] = Z{P(L25) o Zlgp} ©® Zg{m} D ZQ{V%2 o TlS} D Zg3.
(4) Forn > 13, [X"*"CP?,5"] = Zg{in 0 nt1} © Zo{v2 o Upis} @ Zegs.

Proof. (1) Consider the following short exact sequence

17, % 17 %
0 — Cokern3, zr, [(x7cp?, 51 RRMAAN Kernfy — 0,

where 73 : 720(5?) — 721 (S*°) or, more precisely
M50 : La{o10 0 vi7} & Zo{nio o 11} B Zg — Zg{Cio} S Z7 & Zg
and g : T19(S10) — 70 (S1Y) or, more precisely
Mg : Z{A(121)} & Z3{v3y, 10, Mo 0 €11} = Za{oro 0 vir} & Za{mo o pi1} & Zs.

Then we have 15(010 0 v17) = 0, 739(110 © ft11) = 4Ci0, Nig(P(t21)) = P(n21) =
20100017, Mo (Vy) = 0, 0ig(p10) = Moo 1 and nig(mooerr) = 4(vigooiz) =0
by [18, (2.2)], [19, Lemma 6.4, (5.5), (5.9), (7.5), (7.10), (7.14), (7.21)]. Thus

we have

Cokerngo = Z4{Cl()} S5 Z7 S5 Zg
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and
Kernjy = Z{2P(t21)} ® Z3 {1y, mo © €11}
Thus we have a short exact sequence

17 =
0 = Za{Cio} @ Zgy —2 [£17CP2, SV

N, 2{2P(1s1)} ® Z2{g, mo 0 e11} — 0.
By Proposition 10, we have
270 011 = E(27 0€10) = aGio 0 X'p,
where a odd.
(2) Consider the following short exact sequence

0 — Cokern3; =, [(x8cp?, st =, Kern, — 0,
where 13, : 721 (S) — ma2(S11) or, more precisely

31 : Z3{o11 0 vig, M1 © paa} ® Zs — Zs{C11} D Zr & Zo
and 73, @ 20(SM) — me1(S11) or, more precisely

M50 * Z3{vi1 par, i © €12} = Z3{on1 0 vis, M1 © pa} @ Zs.

Then we have 13, (011 0v18) = 0, 151 (1110 p12) = 411, M30(vV11) = 0, M50 (111) =
1 © paz and n3g(11 © €12) = 4(v11 0 014) = 0 by [18, (2.2)], [19, (5.9), (7.10),
(7.14), (7.20)]. Thus we have

Cokern}‘l = Z4{Cll} D Z7 D Zg

and
* 27,3
Kerngo = Za{viy,m1 o €12}
Thus we have a short exact sequence

18, * 18 %
0— Z4{<11} & Z7 & Zg E_p) [ElS(CP2,Sll] 2—Z> Z%{prnll o 512} — 0.

By Proposition 10, we have 2711 0 g2 = a(y1 o X'8p where a odd. Since v?
has order 2, we have v?, o 77 has order 2.
(3) Consider the following short exact sequence
« BT 19~ p2 gl BN x
0 — Cokernsy —— [X'CP*, 5] —— Kerny, — 0,

where 05y : T22(S2) — ma3(S1?) or, more precisely
N3o : Lo{ma o pig} ® Zs — Z{P(125)} ® Zg{(12} ® Z7 D Zyg
and 13, : T21(S'?) — 72 (S1?) or, more precisely
mer 2 Z3{Viy, 12, ma o €13} — Zo{miz o pas} ® Zs.

Then we have 3 (2 0 p13) = 4G, M30(Vi2) = 0, n3o(12) = M2 © g1z and
77;0(7712 0613) = 4(V12 00'15) =0 by [18, (22)], [19, (59), (710), (714), (720)]

Thus we have
Cokerngy = Z{P(t25)} ® Za{Ci2} © Z7 ® Zog
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and
Kerns, = Z%{Vfga M2 0 €13}

Thus we have a short exact sequence

0 — Z{P(t25)} ® Za{C11} © Z7 © ZLg =, [2CP?, 512

Zlgi* 2 3
——— Zy{vis,ma2oe13} — 0.

By Proposition 10, we have 213013 = ali2 o X% where a odd. Since v%,
has order 2, we have 1%, o Ui has order 2.
(4) Consider the following short exact sequence

20, % 20 %
0 — Cokerni, v, [x20CP?, 513 RRECAN Kerns, — 0,

where 135 : m23(S13) — m24(S13) or, more precisely
M3s t Lo{ms o paa} & Zs — Lg{Ci3} © L7 & Ly
and 13y : m22(S13) — m3(S'3) or, more precisely
M52+ Z3{Vis, iz, s 0 €1} — Zo{ma o pia} © Zs.

Then we have 73, (m3 o p1a) = 4Ci3, 131 (¥73) = 0, 05 (13) = M3 0 p1a and
7];1(7]13 0814) = 4(V13 00'16) =0 by [18, (22)], [19, (59), (710), (714), (720)]

Thus we have
Cokernzs = Za{Ci3} © Z7 © Zg
and
Kernz, = Z%{V%, M3 0€14}-

Thus we have a short exact sequence

20« 20 ;%
0— Z4{Cl3} &b Z7 D Zg Z—p> [EQO(CPQ, 513] Z—Z) Z%{V%,’I}lg o 614} — 0.

By (3), we see that 230213 = a2 o Y19 where a odd. Thus we have
23 0 €14 = a3 o X2 where a odd. Since v#; has order 2, we have v%; o U1
has order 2. By the Freudenthal suspension theorem, the suspension homo-
morphism

- [EnJr?CP?, Sn] N [En+8CP27 SnJrl]
is an isomorphism for n > 13. ([
From the above propositions, we have the following theorem.

Theorem 2. For n > 2, the n-th cohomotopy group of (n + 7)-fold suspended
complex projective plane has the following group structure.
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case n 2 3 4 5 6
[Zrt7CP2, 57 2+3 22 +21 23 4+2+63 4422463
case n 7 8 9 10 11
[ZntTCP?, 87 8 4 22 8 + 22 8+22 | c0o+8+2+63 | 8+2+63
case n 12 n > 13
[Ent6CP2,9"] || co+8+2+63 | 8+2+63

5. Homotopy groups of map,(CP2, CP2, %)
It is well known that CP? is a base space of a S'-bundle
St — 5 & cP.
Thus we have an isomorphism
p. : [Z"CP?, 5% — [¥"CP?% CP?.
Also we have an isomorphism
7, (map.(CP? CP?% %)) = [X"CP? CP?

by adjointness [12]. McGibbon [15] showed that homotopy class [CP™, CP"] &
Z which is determined by using homomorphism between homology groups. We
denote the homotopy group 7, (map.(CP?,CP?; %)) by m,(map.(CP% CP?)).
By the results of Sections 3 and 4 and [8] we obtain the following:

Theorem 3.

1) m4(map.(CP%,CP?
map, (CP?, CP?
map, (CP?, CP?

( )) = Zaf{vs o B'p} @ Zs{an (5) o Xip}.
( ( )
( ( )
77 (map,(CP?,CP?)
( ( )
( (C )
. 2

{V5 o 2L8} D Z3{(X1( )}

Zof{v2 o Y7p}.

Za{vs o3} @ Za{as(5) 0 B°p} @ Zs{a (5) 0 2p}.
Z4{vs o Ug}.

Lo{vg o' py @ Zy{o" } O Ls{as(5)} ®Zs{) (5)}
Zy{vs o og o lep} @ Zo{B1(5) o = p}.

Z4{Gs 0 £'°p} @ Z3{vs 0 Us 0 £'p, 13 0 T}

@ Zo{as(5) 0o BPp} @ Zr

map,(CP?%, CP?
CP?%,CP?

1R 1R 1R 1R IIZ
Nob

m10(map ((CP2 CpP?)) =
711 (map,(CP?,CP?)) =
(

)
)
)
)
)
)
e
m12(map,(CP% CP?)) =

6. Applications: Classifying path-components of mapping spaces
and cyclic maps

In this section, we apply the results obtained in Sections 3 and 4 to the clas-
sification of components of mapping spaces and the computation of generalized
Gottlieb groups.

The term fibration is used for a Hurewicz fibration, that is a (not necessarily
surjective) map with the homotopy lifting property with respect to all spaces
[14, p. 49]. It is well known that the evaluation map wy : map(X,Y; f) = Y,
wyr(g) = g(x), is a fibration [5, Lemma 8.15]. For fibrations p : E; — B and
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q: Es — B, p and ¢ are said to be fiber homotopy equivalent if there is a
homotopy equivalence h : £} — FE5 such that o h = p [14, p. 52].

Here we remind several results of the generalized Whitehead product. If «
and § are homotopy classes, then the whitehead product of « and (3 is denoted
by [av, A].

Amap f: X = Y is cyclic if thereisamap F : X xY — Y, called affiliated
map, such that F(z,*) = f(z) and F(x,y) = y. We denote the set of cyclic
map from X to Y by G(X,Y) and it has group structure if X is a co-H-group
[20].

We recall the following equivalent statements due to [6, Lemma 2] and [10,
Theorem 3.7

Theorem 4. Let XX and XY be CW complexes with non-degenerate basepoints
and XX is finite CW complex. Then the following are equivalent.

(A) the map f: XX — XY is cyclic.

(B) [f,idsy] = 0 where [, | is the generalized Whitehead product.

(C) the evaluation fibration wy : map(XX,XY; f) = XY has a section.

(D) the evaluation fibration wy : map(XX,XY; f) — XY is fibre-homotopy
equivalent to wo : map(XX, XY ;%) = Y.

Here is a connection of path components of mapping spaces and cyclic maps.

Theorem 5 ([11, Theorem 3.10]). Suppose X is a CW co-H-space and Y is
any CW complex. Let d € G(X,Y) be any cyclic map. Then for each map
f:X =Y, we have map(X,Y; f) = map(X,Y;f +d). If X is a finite
co-H-space then the corresponding evaluation fibrations wy and wyiq are fibre-
homotopy equivalent.

The following theorem shows a relation between the generalized Whitehead
product and evaluation fibration [6, Theorem 1].

Theorem 6. Given a pair of homotopy classes a = [f],8 = [g] € [ZA,EB|
such that at least one of the identities [o,tsp] = £[B,txp] holds. Then the
evaluation fibrations wy : map(XA,XB; f) — £B) and wy : map(XA,XB;g) —
Y B) are fibre homotopy equivalent.

The following is useful to compute generalized Whitehead product [17].

Remark 1. Let o € [EK,X], 8 € [EL,X], v € [P,X] and ¢ € [Q, L] where
K, L, P and @) are polyhedra. Then we have

oo Sy, 80 58] = [a, 8] 0 Sy A 8).
We also recall a property of the generalized Whitehead product for H-spaces.

Theorem 7 ([1, Proposition 3.1]). If X is an H-space, then [, 8] = 0 for all
a € [¥A X] and B € [¥B, X].

We recall Proposition 4.4 of [8].
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Proposition 12. (1) [SCP?,5?] = Z{n; 0 2t3}.
(2) [X2CP?, 83 =2 Zo{v' 0 X2p} & Z3{1(3) o B?p}.
(3) [Z3CP?, 8% =2 Z{vy 0 23p} @ Zo {31 0 3p} @ Zz{a1(4) 0 Z3p}.
(4) [Z"CP?, 8" = Zy{vpi1 0 X"} @ Zs{ar(n + 1) o Xp} for n > 4.

Let G be an abelian group and S be a subset of G. Let (S) denote the
subgroup of G that is the smallest subgroup containing S. Then we have the
following theorem.

Theorem 8. (1) For each [f],[g] € [ECP?,5?], the evaluation fibrations
wy : map(SCP?, 5% f) — S? and w, : map(SCP?,5%;g9) — S? are
fibre homotopy equivalent.

(2) For each [f],[g] € [S2CP?, 53], the evaluation fibrations
wy : map(X2CP?%, 83 f) — S% and w, : map(X2CP?,53;9) — S are
fibre homotopy equivalent.

(3) The mapping space map(X3CP?% S*) has three different path compo-
nents up to homotopy equivalent as follows:

(a) For each [f],[g] € (2v4 0 X3p, X/ 0 £3p), the evaluation fibrations
wy : map(3CP% 8% f) — S* and wy : map(Z3CP?, 8% g) — S*
are fibre homotopy equivalent.

b) For each [f] € {(2n + 1)v, 0 Z3p|n € Z} and

(b) P
lg] € <21/4 0¥3p, 3V o E3p>, the evaluation fibrations
wy : map(EL3CP?, 5% f) — S* and wyyy : map(X3CP?, 5% f +
g) — S* are fibre homotopy equivalent.

(c) For each [f] € (2v4 0 $3p, S/ 0 53p) and [h] € (a1(4) o $3p), the
evaluation fibrations wy, : map(L3CP?, 5% f) — S* and wp s
map(X3CP2% S h+ f) — S* are fibre homotopy equivalent.

(4) For each [f],[g] € [S*CP?, S%], the evaluation fibrations
wy : map(X*CP?, 5% f) — S° and w, : map(XS*CP?, 5% g) — S° are
fibre homotopy equivalent.

(5) The mapping space map(X°CP?%, S%) has three different path compo-
nents up to homotopy equivalent as follows:

(a) The evaluation fibrations w, : map(L3CP?, 8% ) — S® and wy :
map(X°CP?%,S% f) — S° are fiber homotopy equivalent where
[f] = 2v6 0 E°p.

(b) For each [f] € {vs o X°p, 3v6 0 £5p} and [g] = 2v6 0 X°p,
the evaluation fibrations wy : (X°CP?%, 5% f) — S5 and wyiy -
(X°CP2,5% f + g) — S are fibre homotopy equivalent.

(c) For each [f] € (a1(6) 0 X5p) and [g] = 2v5 0 $°p, the evaluation
fibrations wy : (X°CP?%,S% f) — S5 and wypi, : (85CP?, S5 f +
g) — S® are fibre homotopy equivalent.

(6) For each [f],[g] € [ZCP2,S7], the evaluation fibrations
wy : map(X°CP?,57; f) — ST and w, : map(X°CP?,S57;9) — ST are
fibre homotopy equivalent.
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(7) The mapping space map(XTCP?, S8) has four different path components
up to homotopy equivalent as follows:
(a) w, : map(XTCP?, S8 %) — S8.
(b) Two evaluation fibrations wy : map(X"CP?%, S8 f) — S® and
wy : map(E"CP?, 5% g) — S® are fibre homotopy equivalent where
[f] =vs 0 X7p and [g] = 3vg 0o Xp.
(c) wy, : map(X7CP?, S8, h) — S® where [h] = 2vg o X7p.
(d) Two evaluation fibrations wy : map(X"CP?% S8 f) — S® and
wy : map(STCP?, 58 g) — S® are fibre homotopy equivalent where
1] = a1 (9) o =7 and [g] = 204(9) 0 7.
(8) The mapping space map(S3CP?, S°) has two different path components
up to homotopy equivalent as follows:
(a) For each [f],]g] € (a1(9) o £8p, 2vg 0 X8p),
the evaluation fibrations wy : map(XTCP?, 5% f) — S® and w,
map(SCP?%,S%; g) — S® are fibre homotopy equivalent.
(b) For each [f] € {vg 0 X8p,3vg 0 X8p} and
[9] € (@1(9) 0 X8p, 219 0 B8p), the evaluation fibrations
wy : map(STCP?, 5% f) — S® and wii, : map(STCP?, 5% g) —
S® are fibre homotopy equivalent.
Proof. (1) By [3, (2.1)] we have [t2,72] = 0. By [3, Lemma 1.1] we have
[t2,m2 0 2t3] = 0. By Theorem 4 we have 12 o 213 is cyclic.
(2) Since S? is an H-space, we have G»(CP?, $3) = [£2CP?, S3].
(3) We have
[ta,v4 0 23p] = [ta,v4] 0 2(13 A X%p) = 202 0 X0p £ 0
and
[ta, 50 0 23p] = [14, 20" 0 B(13 A B?p) = 403 0 X0p =0
by (2.5) of [3] and Proposition 3.4 of [8]. By Theorem 4, Theorem 5 and
[10, Theorem 3.10] we have (a) and (b). Finally we have

[ta,1(4) 0 3p] = 14, a1 (4)] 0 B(13 A X2p) = [14, ta] 0 a1(7) 0 p.

By [8, Proposition 3.4] [t4,t4] 0 a1(7) o £%p has order 3. By biaddivitity of
generalized Whitehead product we have

14,2001 (4) 0 23p] = [14, —a1(4) 0 23p] = —[1g, 1 (4) 0 B3p].
By Theorem 5 and [10, Theorem 3.10] we have (c).
(4) We have

15,5 0 B4p] = [15,v5) 0 Z(ta A X3p) =0
by [3, (2.6)] and Theorem 5. Also we have
15, 21(5) 0 B4p] = [15, a1(5)] 0 B(eg A 0X3p) =0
since Gg(S®) = ms(S®) [3, p. 428] and Theorem 5.
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(5) We have
[t6, V6 © B°p] = [t6, 6] © (15 A Xp) = 206 0 210 # 0
by [19, Lemma 6.2] and [8, Proposition 3.7]. Since 7g0X%1%p has order 4, we have
[t6, 3V 0 Bp] = [16, —16 0 L°p] = —[16, v6 0 X5p] and [16, 216 0 BOp] = 0 = [16, *].
Also we have that
L6, @1(6) 0 ] = [16, a1(6)] 0 B(15 A D) = [16, 6] © a1(11) 0 B0
has order 3 in [Z19CP?, S°] [8, Proposition 3.7]. By biadditivity of generalized
Whitehead product we have
(16,201 (6) 0 X°p] = [16, —1(6) 0 B°p] = —[16, a1 (6) 0 B7p)].
Thus we conclude that
map(X°CP?, S% vg 0 £9p) ~; map(X°CP?, S% 3vs 0 ¥°p)
map(X°CP?, S%; 2u5 0 25p) o map(X°CP?, 5% %)
map(X°CP?, S% a;1(6) o £°p) ~ map(X°CP?, 5% a1 (6) o X°p + 215 0 £°p)

by Theorem 6.

(6) Since S” is an H-space, we have G(X2CP2, S3) = [X2CP?, S3].

(7) We have
18,8 0 B7p] = [18, v8] 0 (17 A X5p) = 205 0 115 0 Mp — 2153 0 011 0 Blp £ 0,
where z is an odd by [3, (2.9)] and Proposition 5. By Proposition 12, we have
[tg,v8 0 X7p] is of order 4. By Proposition 5 we have [tg,v8 0 X7p] # 0 and
+[1g,2v5 0 B7p] # 0 and

[tg,3v8 0 X7p] = [1g, —vg 0 X7p] = —[1g,3vg 0 X7p].
So we conclude that map(X7CP2,S%; %), map(X"CP?, 58,215 o X7p) and
map(X7CP?%, S8 v5 0 £7p) ~¢ map(E'CP?, S8 3vs o X7p) have different fibre
homotopy types each others by Theorem 6. Also we have that
[t5,1(8) 0 £7p] = [i5, a1 (8)] 0 Z(ur A E%p)
has order 3 by Proposition 5. By biadditivity of generalized Whitehead product
we have
[Lg, 20&1 (8) o 27])] = [LS, —Q (8) o 27]7] = —[Lg, 051(8) o E7p].

By Theorem 6 we have map(X"CP?, S8 a;(8) o ¥7p) and map(X"CP?, S8;
—a1(8) o X7p) have same fibre homotopy type.
(8) We have

Lo, v9 0 B8p] = [19, 0] 0 Z(ts AX"p) = Tg o170 8 0p £0

by [3, (2.10)] and Proposition 10. Since Tg o v17 0 $16p has order 2, we have
[tg,2vg 0 ¥8p] = 0 = [19, *]. By biadditivity of generalized Whitehead product
we have

Lo, 3vg 0 28p] = [1g, —1i9 0 28p] = —[1g, 19 0 X8p).
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Also we have
[tg, @1(9) 0 Egp] = [t9,@1(9)] 0 X(es A E7p) =0

since a1(9) € G12(S5?). By Theorem 6 we have map(X8CP?, S%; f) has same
fibre homotopy type for [f] € <21/9 o X8, a1(9) o Esp> and map(X3CP?, S?; g0
$8p) ~¢ map(X3CP?, 5%; 3vg o X8p). O

Corollary 1. (1) G1(CP?,S5?) = Z{ns 0 2t3}.
(2) G2(CP?,S3) = Zo{v' 0 2%p} @ Z3{a1(3) o X2p}.
(3) G3(CP?,5%) = Z{2v, 0 $3p} & Za{Sv' 0 X3p}.
(4) Forn = 4,5,6, G,,(CP?,8™) = Zy{v, 11 0X"p} ©Zz{a1(n+1)oX"p}.
(5) G7(CP?,5%) = 0.
(6) Gg((CP2, Sg) = Z2{21/9 o 28}?} D Zg{al(g) [¢] Zsp}.

We recall a long exact sequence [12, Theorem 2.7):
Theorem 9. There is a long exact sequence

s [BT A, map(BB, X; f)] 25 [B7A, X

Loy [2(E7 A A B), X] LN (27 A, map(EB, X f)] = -,

where o = [f] € [EB,X] and P,(8) = [B,q] is the generalized Whitehead
product and w : map(XB, X; f) — B is the evaluation map.

Corollary 2. i, : [X"+tmCP?,5"] — m.(map(X™CP? S™; f)) is an isomor-
phism forr <n—2 and m > 1.

Theorem 10. (1) 71 (map(XCP?,5% f)) = Zo{naov' o X2p} & Z3{[t2, t2] 0
a1(3)} for all f : XCP? — S2.
(2) ma(map(X2CP?,83; f)) & Zo{v 02u6}®Z3{a1(3)} for all f : 2CP? —
S3.
(3) (a) For [f] € (2v4 0 X%, X0 0 ¥%p),

m3(map(S*CP?, S% f))
= Z,{v; o 2} & Z3{a1(4) 0 a1 (7) 0 £°p, [t4, ta] 0 a1 (7) 0 Op}.
(b) For [fle{(2n+1)rqoX3p|n € Z} and [g] € (2v4 0 3p, X' 0 £3p),
m3(map(X°CP?, 5% f + g))
> Zo{v; 0 20} @ Z5{a1 (4) 0 a1 (7) 0 X, [14, ta] 0 a1 (7) 0 XOp}.
(c) For [f]€{a1(4)o%3p, 3a1(4)oX3p} and [g] € (2v4 0 B3p, X/ 0 £3p),
73(map(S3CP?, 8% f + g)) = Zy{vi o 2%} @ Zs{a1(4) o a1(7) o 20p}.
(4) ma(map(Z'CP?, 8% f)) = Za{vs o ng} @ Zs{az(5) o B°p}
@© Zs{ai5(5) o Z8p}

for all f : X*CP? — S°.
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(5) (a) For [f] € (2v6 0 2p),
5 (map(S°CP?, % f))
=~ 72{vs 0 g9, U 0 210p} @ Z3{[t6, t6] 0 a1(11) 0 TP}
(b) For [f] € {vs o X5p, 316 0 £°p} and [g] € (2v5 0 £°p),
s (map(SPCP?, S5 f)
>~ Za{vs 0 go} ® Zo{Ts 0 B9} @ Zs{[16, t6] 0 a1(11) 0 2%}
(c) For [f] € {a1(6) o X5p, 201 (6) 0 X5p} and [g] € (2v5 0 £°p),
75(map(S°CP?, S8 £)) = Z3{vs 0 go, g 0 B'Op}.

(6) 76(map(S°CP?,87; f)) 2= Zs{o 0 2015} ® Za{aa(T)} @ Zs{an 5(7)}
for all f:35%p — S7.
(7) (a) w7 (map(X"CP?, 5% %))

~ 72 14 14
> Zi{osovis0 X *p,vgooy; o X p}

® Zg{ﬂl (8) © 214177 [LSu LS] © 061(15) o 21417}.
(b) For [f] € {vg o X7p,3vg 0 X7p},

77 (map(X7CP?%, S8, f)) = Zy{20g o 115 0 B1p).
(c) For [f] = vs o XTp,
m7(map(X'CP?, 5% f))
~ Z4{os o v15 0 BMp} @ Zo{vg 0 011 0 B'p}
@ Z3{B1(8) 0 BHp, 15, 18] 0 a1 (15) 0 BHp},
(d) For [f] € {a1(9) 0 B7p, 201 (9) 0 X7p},
re(map(STCP?, 8% )
~ 7Z3{ogovi5 0 BMp,vg 0 011 0 S} B Zs{B1(8) o TMp}.
(8) (a) For [f] € (a1(9) 0 X8p, 219 0 X8p),
ms(map(X°CP?, 8% f))
= Zg{v§ 0 g1s} ® Z3{Vg o v17 0 X'%p, g o €10}
® Zr{a17(9) o S1p} @ Zo{ah(9) o ZHp}.
(b) For [f] € {vg o £8p, 319 0 Z8p} and [g] € (a1(9) o X8p, 219 0 £8p),
7g(map(S2CP?, 8% f + g))
= Zg{vs 0 g15} ® Zo{Mo 0210} ® Zr{a 7(9) 0 B1p} @ Zo{(9) o £1p}.
Proof. (1) We apply A =S°, B=CP?, X = 5% and r = 2 to Theorem 9. Let

f:XCP? — S? be any map and let o = [f]. Then we have an exact sequence

2(52) L2y [22CP?, 5% 25 711 (map(SCP?, S%; f)) — 0.
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By Theorem 8 we have P, is trivial, so that
i, : [£*CP?, S?] — m (map(SCP?, 5% f))
is an isomorphism. By Proposition 3.2 of [8] this proof is complete.
(2) We apply A = S° B = XCP?%, X = S3 and r = 3 to Theorem 9. Let
f:X2CP? — S® be any map and let o = [f]. Then we have an exact sequence

m3(5%) Loy [21CP?, $%] 1 o (map(S2CP2, 83, f)) — 0.
Since S? is an H-space, we have P, is trivial. Thus we have 7, : [Z2CP?, $?] —
71 (map(XCP?, S%; f)) is an isomorphism. By Proposition 3.3 of [8] this proof
is complete.
(3) We apply A = S% B =X2CP?, X = S* and r = 4 to Theorem 9. Then

we have an exact sequence

ma(SY) Loy [28CP?, 54 5 g (map(E3CP2, S% £)) — 0.

First we consider a = [f] € (2v4 0 ¥3p, X1/ 0 £3p). By Theorem 8 P, is trivial.
Then we have i, : [X5CP?, 5% — m3(map(XCP?,8%; f)) is an isomorphism.
By Proposition 3.4 of [8] we have (a). Second we consider that a = [f] €
{(2n + 1)vy 0 ¥3p|n € Z}. By Theorem 8 we have

CokerP,, = Zy{v3 o %0} @ Z3{a1(4) 0 a1 (7) 0 23, [14, t4] 0 1 (7) 0 Z3p}.
Since 4’ : CokerP,, — m3(map(XCP3, S%; f)) is an isomorphism, we have (b) by
Proposition 3.4 of [8]. Finally we consider a = [f] € {a1(4)o%3p, 3a1(4) 0 E3p}.
By Theorem 8 we have

CokerP,, = Z4{v3 o X%} @ Zz{a1(4) 0 a1 (7) o X3p}.

Since i, : CokerP, — m3(map(XCP3,S%; f)) is an isomorphism, we have (c)
by Proposition 3.4 of [8].

(4) We apply A = S° B =33CP? X = S° and r = 5 to Theorem 9. Let
f: X4CP? — S° be any map and let o = [f]. Then we have an exact sequence

m5(S%) Loy [Z8CP?, S5 25 my(map(S1CP2, S £)) — 0.

By Theorem 8 we have P, is trivial. Thus we have i, : [X8CP? S5 —
74(map(X*CP?%, S%; f)) is an isomorphism. By Proposition 3.5 of [8] this proof
is complete.

(5) We apply A = S, B =Y5CP?, X = S% and r = 6 to Theorem 9. Then
we have an exact sequence

76(S8) L2y [D10C P2, S 125 s (map(E5CP2, S°; £)) — 0.
First we consider o = [f] € <21/6 o 25p>. By Theorem 8 we have P, is trivial.
Thus we have i, : [L1°CP?, S — m5(map(X°CP?, 5% f)) is an isomorphism.

By Proposition 3.6 of [8], we have (a). Second we consider o« = [f] € {vg o
¥°p, 35 0 £5p}. By Theorem 8 we have

CokerP, = Zy{vg 0 go} ® Zo{Tg 0 B0} @ Zs{[16, 6] 0 a1 (11) 0 B},
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By the isomorphism 4/, : CokerP, — 75(map(3°CP?, S% f)) we have (b). Fi-
nally we consider a = [f] € {a1(6) o X°p,2a3(6) o 2°p}. By Theorem 8 we
have
CokerP,, = Z2{vs o go, 76 0 '°}.
By the isomorphism i/, : CokerP, — m5(map(X°CP?, S% f)) we have (c).
(6) We apply A = S° B =X5CP? X = S7 and r = 7 to Theorem 9. Let
f:X5CP? — S™ be any map and let o = [f]. Then we have an exact sequence

m2(S7) L2 [S12C P2, 87] 225 76 (map(S°CP2, S7; £)) — 0.
Since S7 is an H-space, we have P, is trivial. Thus we have i, : [X12CP?,S7] —
76(map(XCP2, S7; f)) is an isomorphism. By Proposition 3.7 of [8] this proof
is complete.
(7) We apply A = S, B =X5CP? X = S7 and r = 7 to Theorem 9. Then
we have an exact sequence

5(5%) L2 [R14CP?, $8) 5 77 (map(STCP?, S5; f)) — 0.

First we consider that f = % and o = [f]. Then we have P, is trivial. Thus
we i, : [S1CP?, S8 — m7(map(X7CP?, S8; f)) is an isomorphism. Second we
consider that a = [f] € {vg 0 X"p, 3vg 0 X7p}. Then we have

CokerP,, = Zy{20g o 115 0 B14p} @ 72,

where 205 o v15 0 21p = zvg 0 011 2"p for some odd z. By isomorphism
i’ : CokerP, — m7(map(X"CP?,S8; f)) we have (b). Third we consider that
a = [f] = 2vg 0 X7p. By Theorem 8 we have

CokerP, = Zy{og o v15 0 2Mp} @ Zy{vg 0 011 0 21} @ Z2.

By isomorphism 4/, : CokerP, — 77(map(37CP?, S8; f)) we have (c). Finally
we consider that o = [f] € {a1(9) o X7p, 2a1(9) o X7p}. By Theorem 8 we have
CokerP, = Z2{og o 115 0 2¥p, vg 0 011 0 M} @ Zs{B1(8) 0 B14p}.

By isomorphism i, : CokerP, — m7(map(X7CP?, S%; f)) we have (d).
(8) We apply A = S, B=X"CP?, X = 5% and r = 8 to Theorem 9. Then
we have an exact sequence

70(5?) L25 [216CP?, §%) 2% mg(map(S5CP?, S°; f)) — 0.

First we consider @ = [f] € (190 ¥p, 319 0 X%p). By Theorem 8 we have
P, is trivial. By Theorem 9 we have (a). Finally we consider a = [f] €
{vg 0 ¥8p, 319 0 X8}. By Theorem 8 we have

CokerP, = Zs{(Ec')on?s +mzgocg} ® Zy{va o Ti5}
© Zr{a17(9) 0o B} @ Zo{a}(9) o ZHp}.
By an isomorphism i, : CokerP, — mg(map(X8CP?, 5% f)) we have (B). O
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Corollary 3. (1) For [f],[g] € [XCP?, 5%, map(XCP?,S?; f) is homo-

(10]

(11]

(12]

(13]

topy equivalent to map(SCP?%, 5%; g).

(2) For [f],[g] € [X2CP?,83], map(X2CP?,53; f) is homotopy equivalent
to map(X2CP?, S3;g).

(3) For [f] € (2v4 0 X3p, X/ 0 E%p), [g] € {(2n + 1)y 0 X3p|n € Z} and
[h] € {a1(4)0X3p, 31 (4) 0 X3p}, four path-components mapy, mapyiq,
mapp+f and mapgin have different homotopy types each other.

(4) For [f],[g] € [2*CP?,5°], map(X*CP?, S5 f) is homotopy equivalent
to map(X*CP?, 8% g).

(5) For [f] € (2v60%%p), [g] € {vs o £°p, 31 0 Xp} and [h] € {a1(6) o
¥5p, 21 (6) 0 X°p}, four path-components mapys, mapys+y, mapp+ s and
mapg+n have different homotopy types each other.

(6) For [f],[g] € [E°CP?, 8], map(X5CP?, S7; f) is homotopy equivalent
to map(X°CP?,87; g).

(7) For [f] = vg o X7p and [g] = a1(8) o X7p, siz path-components map.,
mapys, mapag, Mapg, Mapsyg and mapayriqg have different homotopy
types each other.

(8) For [g] € {vg 0 X8p,3vg 0 X8p} and [f] € (a1(9) o £8p, 2v9 0 £8p), two
path-components mapy and mapyyg have different homotopy types.
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