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HOMOTOPY PROPERTIES OF map(ΣnCP 2, Sm)

Jin-ho Lee

Abstract. For given spaces X and Y , let map(X,Y ) and map∗(X,Y )

be the unbased and based mapping spaces from X to Y , equipped with
compact-open topology respectively. Then letmap(X,Y ; f) andmap∗(X,

Y ; g) be the path component of map(X,Y ) containing f and map∗(X,Y )

containing g, respectively. In this paper, we compute cohomotopy groups
of suspended complex plane πn+m(ΣnCP 2) for m = 6, 7. Using these

results, we classify path components of the spaces map(ΣnCP 2, Sm) up
to homotopy equivalence. We also determine the generalized Gottlieb

groups Gn(CP 2, Sm). Finally, we compute homotopy groups of map-

ping spaces map(ΣnCP 2, Sm; f) for all generators [f ] of [ΣnCP 2, Sm],
and Gottlieb groups of mapping components containing constant map

map(ΣnCP 2, Sm; ∗).

1. Introduction

Let X and Y be based topological spaces. A major object of homotopy
theory is to study [X,Y ], the set of homotopy classes of based maps. In general,
if Y is a co-H-group, [X,Y ] has a group structure. Let ΣX be the suspension of
X. Since every suspended space ΣX is co-group, [ΣX,Y ] has group structure.
If ΣX is a sphere Sn, [Sn, Y ] is the n-th homotopy group of Y . On the other
hand, [X,Sn] is called the n-th cohomotopy set of X and denoted by πn(X).
If X is a co-H-group, the cohomotopy set is a group and called cohomotopy
group. Homotopy groups and cohomotopy groups have been studied by many
authors and are the major object in algebraic topology.

Another major object of homotopy theory is to investigate the set of (un-
based) maps f : X → Y . We denote map(X,Y ) to be the set of continuous
maps from X to Y equipped with compact-open topology. Then we write
map(X,Y ; f) for the path-component of map(X,Y ) containing f . Important
cases are map(X,Y ; ∗), the space of null-homotopic maps and map(X,X; 1),
the identity path-component. It is proved that every topological space appears
as a quotient of a paracompact Hausdorff space in a natural way [7]. Thus it
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is important to study path components of mapping spaces to investigate topo-
logical spaces. In general, the mapping space map(X,Y ) does not have CW
homotopy type. Even if X and Y are finite CW complexes, map(X,Y ) may
not be of CW homotopy type. By Milnor [16], when X is a compact metric
space and Y is a CW complex, the path components map(X,Y ; f) are of CW
homotopy type. Also according to Kahn [9], map(X,Y ) is of CW type when X
is a CW complex and Y only has finitely many non-trivial homotopy groups.

Lang proved that if X is a suspended space, then all path components
of map∗(X,Y ) have the same homotopy type [12, Theorem 2.1]. Whitehead
proved that map(Sn, Sm; f) is homotopy equivalent to map(Sn, Sm; 0) if and
only if wf has a section, where 0 : Sn → Sm is a constant map [21, Theorem
2.8]. Lupton and Smith proved that

map(X,Y ; f) ' map(X,Y ; f + d)

for a CW co-H-space X and any CW complex Y , where d : X → Y is a cyclic
map [10, Theorem 3.10]. Recently, Gatsinzi [2] proved that the dimension of the
rational Gottlieb group of the universal cover m̃ap(X,S2n; f) of the function

space map(X,S2n; f) is at least equal to the dimension of H̃∗(X;Q) under
several assumptions. Lupton and Smith [10] showed that

Gn(map∗(X,Y ; ∗)) ∼= Gn(Y )⊕Gn(X,Y ).

Maruyama and Oshima [13] determined homotopy groups of

map∗(SU(3), SU(3)), map∗(Sp(2), Sp(2)) and map∗(G2, G2).

In Section 2, we present some basic knowledge of composition methods [19].
We review a mapping cone sequence and Puppe sequence related to the sus-
pended complex projective plane and discuss the concept of cyclic maps and
its properties. Also we recall the Toda brackets and their properties related to
suspended complex planes.

In Sections 3 and 4, we compute πn(Σn+kCP 2) for k = 6, 7. As a result, we
obtain the results (see Tables 1, 2).

In Section 5, we computer homotopy groups of map∗(CP 2,CP 2, ∗) by the
result of Sections 3, 4 and [8].

In Section 6, we apply our computation to the classification of path compo-
nents of mapping spaces up to homotopy equivalent and evaluation fibrations
up to fibre homotopy equivalent. Hansen proved that the evaluation fibration
wf : (ΣX,ΣY ; f) → ΣY has a section if and only if [f, idΣY ] = 0, where [ , ]
is the generalized Whitehead product [6]. Lupton and Smith proved that the
following statements are all equivalent: (1) a map f : X → Y is cyclic, (2) wf
has a section, and (3) two fibrations wf and w0 are fiber homotopy equivalent,
where 0 is a constant map [10]. Also, we apply our results to the formulation
of generalized Gottlieb groups from suspended complex plane to sphere and
Gottlieb groups of path components of constant map.

We use the notation of [8, 19] freely.
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Table 1.

case n 2 3 4 5 6 7
πn(Σn+6CP 2) 2 + 15 2 + 3 8 + 2 + 32 + 5 4 + 9 42 + 9 + 3 4 + 3

case n 8 9 10 11 n ≥ 12
πn(Σn+6CP 2) 42 + 32 4 + 3 2 + 3 2 + 3 2

Table 2.

case n 2 3 4 5 6

πn(Σn+7CP 2) 2 + 3 22 + 21 23 4 + 2 + 63 4 + 22 + 63
case n 7 8 9 10 11

πn(Σn+7CP 2) 8 + 22 8 + 22 8 + 22 ∞+ 8 + 2 + 63 8 + 2 + 63
case n 12 n ≥ 13

πn(Σn+7CP 2) ∞+ 8 + 2 + 63 8 + 2 + 63

where the integer n denotes the cyclic group Zn, ∞ denotes the groups of
integers Z, “+” denotes the direct sum of abelian groups, and (s)k denotes the
k-times direct sum of Zs.

2. Preliminaries

The complex projective plane CP 2 is defined by the mapping cone S2∪η2 e4,
where η2 : S3 → S2 is the Hopf fibering. Consider a Puppe sequence

S3 η2−→ S2 i−→ CP 2 p−→ S4 η3−→ S3 Σi−→ · · · ,
where i : S2 → CP 2 is the inclusion map, p : CP 2 → S4 is the collapsing map
of S2 to a point ∗, and ηk = Σk−2η2 for k ≥ 2. Then, we have a long exact
sequence of homotopy sets

πn+3(Sm)
η∗n+3−−−→ πn+4(Sm)

Σnp∗−−−→ [ΣnCP 2, Sm]

Σni∗−−−→ πn+2(Sm)
η∗n+2−−−→ πn+3(Sm).

Therefore, we have the short exact sequence

(2.1) 0→ Cokerη∗n+3
Σnp∗−−−→ [ΣnCP 2, Sm]

Σni∗−−−→ Kerη∗n+2 → 0.

When G is an abelian group and p ≥ 2 is a prime number, we denote the
p-primary parts of G by G(p).

For p ≥ 3, we have an isomorphism

[ΣnCP 2, Sk](p) ∼= πn+2(Sk)(p) ⊕ πn+4(Sk)(p),

since πn+1(Sn) is of order 2 for n ≥ 3 [19, Proposition 5.1].
It is well known that the Hopf fibrations η2 : S3 → S2, ν4 : S7 → S4, and

σ8 : S15 → S8 induce isomorphisms

(2.2) [X,S3]→ [X,S2], α 7→ η2 ◦ α,
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(2.3) [X,S3]⊕ [ΣX,S7]→ [ΣX,S4], (α, β) 7→ Σα+ ν4 ◦ β,

(2.4) [X,S7]⊕ [ΣX,S15]→ [ΣX,S8], (α, β) 7→ Σα+ σ8 ◦ β.
Consider elements α ∈ [Y, Z], β ∈ [X,Y ], and γ ∈ [W,X] which satisfy

α ◦ β = 0 and β ◦ γ = 0. Let Cβ be the mapping cone of β, and i : Y → Cβ ,
p : Cγ → ΣX be the inclusion and the shrinking map, respectively. We denote
an extension of α satisfying i∗(α) = α by α ∈ [Cβ , Z], and a coextension of γ
satisfying p∗(γ̃) = Σγ by γ̃ ∈ [ΣW,Cβ ] [19].

We recall some relations between (co)extensions and Toda brackets [19].

Proposition 1. Let α ∈ [Y,Z], β ∈ [X,Y ], and γ ∈ [W,X] be elements
which satisfy α ◦ β = 0 and β ◦ γ = 0. Let {α, β, γ} be the Toda bracket and
p : Cγ → ΣW be the shrinking map, respectively. Then, we have

(a) α ◦ γ̃ ∈ {α, β, γ},
(b) α ◦ β ∈ {α, β, γ} ◦ p.

The following is useful for determining 2-primary parts of the class [ΣnCP 2,
Sm] [8].

Proposition 2. Let ιC : CP 2 → CP 2 and ι4 : S4 → S4 be identity maps on

CP 2 and S4, respectively. Let 2ι3 : ΣCP 2 → S3 and 2̃ι4 : S5 → ΣCP 2 be
extension and coextension of 2ι3 and 2ι4, respectively. Then we have

2ΣιC = Σi ◦ 2ι3 + 2̃ι4 ◦ Σp

on [ΣCP 2,ΣCP 2].

Here, we recall the concept of a cyclic map and Gottlieb groups of a space
X, denoted by Gn(X) [4, 20].

Definition 1. A map f : Y → X is cyclic if there is a map F : X × Y → X,
called an affiliated map of f , such that the diagram homotopy commutative:

X × Y F // X ×X

X ∨ Y
1∨f //

i

OO

X ∨X.

∇

OO

Let G(Y,X) denote the set of all homotopy classes of cyclic maps from Y
to X. Varadarajan showed that G(Y,X) has a group structure for any co-H-
space Y [20]. For an integer i ≥ 1, the set of homotopy classes of cyclic maps
ΣnX → Y we denote by Gn(X,Y ), and call the n-th generalized Gottlieb group
of (X,Y ). When Y = Sn, G(Y,X) = Gn(X) is the n-th Gottlieb group of X.
In [4], Gottlieb introduced and studied the evaluation subgroups

Gn(X) = w∗(πn(map(X,X; 1))),

where w∗ : πn(map(X,X; 1))→ πn(X). Note that the Gn(X) can alternatively
be described as homotopy classes of maps f : Sn → X such that (f |1) :
Sn ∨X → X admits an extension F : Sn ×X → X up to homotopy.
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3. [Σn+6CP 2, Sn] for n ≥ 2

In this section, we compute the n-th cohomotopy group of (n+ 6)-fold sus-
pended complex projective plane by using (2.1).

Proposition 3. (1) [Σ8CP 2, S2] = Z2{η2 ◦ µ3 ◦ Σ8p} ⊕ Z15.
(2) [Σ9CP 2, S3] = Z2{ε′ ◦ Σ9p} ⊕ Z3.
(3) [Σ10CP 2, S4] = Z8{ν4 ◦ σ′ ◦ Σ10p} ⊕ Z2{Eε′ ◦ Σ10p} ⊕ Z2

3 ⊕ Z5.
(4) [Σ11CP 2, S5] = Z4{ν5 ◦ σ8 ◦ Σ11p} ⊕ Z9.

Proof. (1) Consider the following short exact sequence

0→ Cokerη∗11
Σ8p∗−−−→ [Σ8CP 2, S2]

Σ8i∗−−−→ Kerη∗10 → 0,

where η∗11 : π11(S2)→ π12(S2) or, more precisely

η∗11 : Z2{η2 ◦ ε3} → Z2
2{η2

2 ◦ ε4, η2 ◦ µ3}
and η∗10 : π10(S2)→ π11(S2) or, more precisely

η∗10 : Z15 → Z2.

Then we have
Cokerη∗11 = Z2{η2 ◦ µ3}

and
Kerη∗10 = Z15

by [19, (7.5)]. Now we have a short exact sequence

0→ Z2{η2 ◦ µ3}
Σ8p∗−−−→ [Σ8CP 2, S2]

Σ8i∗−−−→ Z15 → 0.

Thus we have
[Σ8CP 2, S2] = Z2{η2 ◦ µ3 ◦ Σ8p} ⊕ Z15.

(2) Consider the following short exact sequence

0→ Cokerη∗12
Σ9p∗−−−→ [Σ9CP 2, S3]

Σ9i∗−−−→ Kerη∗11 → 0,

where η∗12 : π12(S3)→ π13(S3) or, more precisely

η∗12 : Z2
2{µ3, η3 ◦ ε4} → Z4{ε′} ⊕ Z2{η3 ◦ µ4} ⊕ Z3

and η∗11 : π11(S3)→ π12(S3) or, more precisely

η∗11 : Z2{ε3} → Z2
2{µ3, η3 ◦ ε4}.

Then we have η∗12(µ3) = η3 ◦µ4 , η∗12(η3 ◦ ε4) = η3 ◦ ε4 ◦ η12 = η2
3 ◦ ε5 = 2ε′ and

η∗11(ε3) = η3 ◦ ε4 by [18, (2.2)], [19, Lemma 6.6, (7.5)]. Thus we have

Cokerη∗12 = Z2{ε′} ⊕ Z3

and
Kerη∗11 = 0.

Now we have a short exact sequence

0→ Z2{ε′} ⊕ Z3
Σ9p∗−−−→ [Σ9CP 2, S3]

Σ9i∗−−−→ 0.
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Thus we have

[Σ9CP 2, S3] = Z2{ε′ ◦ Σ9p} ⊕ Z3.

(3) Consider the following short exact sequence

0→ Cokerη∗13
Σ10p∗−−−−→ [Σ10CP 2, S4]

Σ10i∗−−−→ Kerη∗12 → 0,

where η∗13 : π13(S4)→ π14(S4) or, more precisely

η∗13 : Z3
2{ν3

4 , µ4, η4 ◦ ε5} → Z8{ν4 ◦ σ′} ⊕ Z4{Eε′} ⊕ Z2{η4 ◦ µ5} ⊕ Z2
3 ⊕ Z5

and η∗12 : π12(S4)→ π13(S4) or, more precisely

η∗12 : Z2{ε4} → Z3
2{ν3

4 , µ4, η4 ◦ ε5}.
Then we have η∗13(ν3

4) = 0, η∗13(µ4) = η4 ◦ µ5, η∗13(η4 ◦ ε5) = η2
4 ◦ ε6 = 2Eε′ and

η∗12(ε4) = η4 ◦ ε5 by [18, (2.2)], [19, Lemma 6.6, (5.9), (7.5)]. Thus we have

Cokerη∗13 = Z8{ν4 ◦ σ′} ⊕ Z2{Eε′} ⊕ Z2
3 ⊕ Z5

and

Kerη∗12 = 0.

Now we have a short exact sequence

0→ Z8{ν4 ◦ σ′} ⊕ Z2{Eε′} ⊕ Z2
3 ⊕ Z5

Σ10p∗−−−−→ [Σ10CP 2, S4]
Σ10i∗−−−→ 0.

Thus we have

[Σ10CP 2, S4] = Z8{ν4 ◦ σ′ ◦ Σ10p} ⊕ Z2{Eε′ ◦ Σ10p} ⊕ Z2
3 ⊕ Z5.

(4) Consider the following short exact sequence

0→ Cokerη∗14
Σ11p∗−−−−→ [Σ11CP 2, S5]

Σ11i∗−−−→ Kerη∗13 → 0,

where η∗14 : π14(S5)→ π15(S5) or, more precisely

η∗14 : Z3
2{ν3

5 , µ5, η5 ◦ ε6} → Z8{ν5 ◦ σ8} ⊕ Z2{η5 ◦ µ6} ⊕ Z9

and η∗13 : π13(S5)→ π14(S5) or, more precisely

η∗13 : Z2{ε5} → Z3
2{ν3

5 , µ5, η5 ◦ ε6}.
Then we have η∗14(ν3

5) = 0, η∗14(µ5) = η5 ◦ µ6, η∗14(η5 ◦ ε6) = η2
5 ◦ ε7 = 2E2ε′ =

2(2ν5 ◦σ8) = 4ν5 ◦σ8 and η∗13(ε5) = η5 ◦ε6 by [18, (2.2)], [19, Lemma 6.6, (5.9),
(7.10)]. Thus we have

Cokerη∗14 = Z4{ν5 ◦ σ8} ⊕ Z9

and

Kerη∗13 = 0.

Now we have a short exact sequence

0→ Z4{ν5 ◦ σ8} ⊕ Z9
Σ11p∗−−−−→ [Σ11CP 2, S5]

Σ11i∗−−−→ 0.

Thus we have

[Σ11CP 2, S5] = Z4{ν5 ◦ σ8 ◦ Σ11p} ⊕ Z9. �
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Proposition 4. (1) [Σ13CP 2, S7] = Z4{ν7 ◦ σ10 ◦ Σ13p} ⊕ Z3.
(2) [Σ12CP 2, S6] = Z2

4{ν6 ◦ σ9 ◦ Σ12p, 2ν6} ⊕ Z9 ⊕ Z3.

Proof. (1) Consider the following short exact sequence

0→ Cokerη∗16
Σ13p∗−−−−→ [Σ13CP 2, S7]

Σ13i∗−−−→ Kerη∗15 → 0,

where η∗16 : π16(S7)→ π17(S7) or, more precisely

η∗16 : Z4
2{σ′ ◦ η2

14, ν
3
7 , µ7, η7 ◦ ε8} → Z8{ν7 ◦ σ10} ⊕ Z2{η7 ◦ µ8} ⊕ Z3

and η∗15 : π15(S7)→ π16(S7) or, more precisely

η∗15 : Z3
2{σ′ ◦ η14, ν7, ε7} → Z4

2{σ′ ◦ η2
14, ν

3
7 , µ7, η7 ◦ ε8}.

Then we have η∗16(σ′ ◦η2
14) = σ′ ◦η3

14 = σ′ ◦ (4ν14) = 4(σ′ ◦ν14) = 4(xν7 ◦σ10) =
4(ν7 ◦σ10) where x odd, η∗16(ν3

7) = 0, η∗16(µ7) = η7 ◦µ8 , η∗16(η7 ◦ε8) = η2
7 ◦ε9 =

2E2(E2ε′) = 2E2(2ν5 ◦ σ8) = 4ν7 ◦ σ10 , η∗15(σ′ ◦ η14) = σ′ ◦ η2
14, η∗15(ν7) = ν3

7

and η∗15(ε7) = η7 ◦ ε8 by [18, (2.2)], [19, (5.5), (5.9), (7.10), (7.19), Lemma 6.6].
Thus we have

Cokerη∗16 = Z4{ν7 ◦ σ10} ⊕ Z3

and

Kerη∗15 = 0.

Now we have a short exact sequence

0→ Z4{ν7 ◦ σ10} ⊕ Z3
Σ13p∗−−−−→ [Σ13CP 2, S7]

Σ13i∗−−−→ 0.

Thus we have

[Σ13CP 2, S7] = Z4{ν7 ◦ σ10 ◦ Σ13p} ⊕ Z3.

(2) Consider the following short exact sequence

0→ Cokerη∗15
Σ12p∗−−−−→ [Σ12CP 2, S6]

Σ12i∗−−−→ Kerη∗14 → 0,

where η∗15 : π15(S6)→ π16(S6) or, more precisely

η∗15 : Z3
2{ν3

6 , µ6, η6 ◦ ε7} → Z8{ν6 ◦ σ9} ⊕ Z2{η6 ◦ µ7} ⊕ Z9

and η∗14 : π14(S6)→ π15(S6) or, more precisely

η∗14 : Z8{ν6} ⊕ Z2{ε6} ⊕ Z3 → Z3
2{ν3

6 , µ6, η6 ◦ ε7}.
Then we have η∗15(ν3

6) = 0, η∗15(µ6) = η6◦µ7, η∗15(η6◦ε7) = η2
6◦ε8 = 2E(E2ε′) =

2E(2ν5 ◦ σ8) = 4ν6 ◦ σ9 η∗14(ν6) = ν3
6 and η∗14(ε6) = η6 ◦ ε7 by [18, (2.2)],

[19, Lemma 6.6, 6.3, (5.9), (7.10)]. Thus we have

Cokerη∗15 = Z4{ν6 ◦ σ9} ⊕ Z9

and

Kerη∗14 = Z4{2ν6}+ Z3.

So we have a short exact sequence

0→ Z4{ν6 ◦ σ9} ⊕ Z9
Σ12p∗−−−−→ [Σ12CP 2, S6]

Σ12i∗−−−→ Z4{2ν6} ⊕ Z3 → 0.
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We consider a commutative diagram:

0 // Z4{ν6 ◦ σ9}
Σ12p∗//

Σ1

��

[Σ12CP 2, S6](2)
Σ12i∗ //

Σ2

��

Z4{2ν6} //

Σ3

��

0

0 // Z4{ν7 ◦ σ10}
Σ13p∗// [Σ13CP 2, S7](2)

Σ12i∗ // 0 // 0

Since Σ1 and Σ13p∗ are isomorphisms, Σ12p∗ has left inverse. This implies that
the first row splits. Thus we have

[Σ12CP 2, S6] = Z2
4{ν6 ◦ σ9 ◦ Σ12p, 2ν6} ⊕ Z9 ⊕ Z3. �

Proposition 5. (1) [Σ14CP 2, S8] = Z2
4{σ8 ◦ ν15 ◦ Σ14p, ν8 ◦ σ11 ◦ Σ14p} ⊕ Z2

3.
(2) [Σ15CP 2, S9] = Z4{σ9 ◦ ν16 ◦ Σ15p} ⊕ Z3.
(3) [Σ16CP 2, S10] = Z2{σ10 ◦ ν17 ◦ Σ16p} ⊕ Z3.
(4) [Σ17CP 2, S11] = Z2{σ11 ◦ ν18 ◦ Σ17p} ⊕ Z3.
(5) [Σn+6CP 2, Sn] = Z3{β1(n) ◦ Σn+6p} for n ≥ 12.

Proof. (1) Consider the following short exact sequence

0→ Cokerη∗17
Σ14p∗−−−−→ [Σ14CP 2, S8]

Σ14i∗−−−→ Kerη∗16 → 0,

where η∗17 : π17(S8)→ π18(S8) or, more precisely

η∗17 : Z5
2{σ8 ◦ η2

15, (Eσ
′) ◦ η2

15, ν
3
8 , µ8, η8 ◦ ε9} → Z2

8{σ8 ◦ ν15, ν8 ◦ σ11} ⊕ Z2{η8 ◦ µ9} ⊕ Z2
3

and η∗16 : π16(S8)→ π17(S8) or, more precisely

η∗16 : Z4
2{σ8 ◦ η15, (Eσ

′) ◦ η15, ν8, ε8} → Z5
2{σ8 ◦ η2

15, (Eσ
′) ◦ η2

15, ν
3
8 , µ8, η8 ◦ ε9}.

Then we have η∗17(σ8 ◦ η2
15) = σ8 ◦ (4ν15) = 4(σ8 ◦ ν15), η∗17((Eσ′) ◦ η2

15) =
E(η∗17(σ′◦η2

14)) = 4ν8◦σ11, η∗17(ν3
8) = 0, η∗17(µ8) = η8◦µ9, η∗17(η8◦ε9) = 4ν8◦σ11,

η∗16(σ8 ◦ η15) = σ8 ◦ η2
15, η∗16((Eσ′) ◦ η15) = (Eσ′) ◦ η2

15, η∗16(ν8) = ν3
8 and

η∗16(ε8) = η8 ◦ ε9 by [18, (2.2)], [19, (5.5), (5.9), (7.10), (7.19), Lemma 6.6].
Thus we have

Cokerη∗17 = Z2
4{σ8 ◦ ν15, ν8 ◦ σ11} ⊕ Z2

3

and

Kerη∗16 = 0.

So we have a short exact sequence

0→ Z2
4{σ8 ◦ ν15, ν8 ◦ σ11} ⊕ Z2

3
Σ14p∗−−−−→ [Σ14CP 2, S8]

Σ14i∗−−−→ 0.

Thus we have

[Σ14CP 2, S8] = Z2
4{σ8 ◦ ν15 ◦ Σ14p, ν8 ◦ σ11 ◦ Σ14p} ⊕ Z2

3.

(2) Consider the following short exact sequence

0→ Cokerη∗18
Σ15p∗−−−−→ [Σ15CP 2, S9]

Σ15i∗−−−→ Kerη∗17 → 0,
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where η∗18 : π18(S9)→ π19(S9) or, more precisely

η∗18 : Z4
2{σ9 ◦ η2

16, ν
3
9 , µ9, η9 ◦ ε10} → Z8{σ9 ◦ ν16} ⊕ Z2{η9 ◦ µ10} ⊕ Z3

and η∗17 : π17(S9)→ π18(S9) or, more precisely

η∗17 : Z3
2{σ9 ◦ η16, ν9, ε9} → Z4

2{σ9 ◦ η2
16, ν

3
9 , µ9, η9 ◦ ε10}.

Then we have η∗18(σ9 ◦ η2
16) = 4σ9 ◦ ν16, η∗18(ν3

9) = 0, η∗18(µ9) = η9 ◦ µ10,
η∗18(η9 ◦ ε10) = 4ν9 ◦ σ12 = 0 , η∗17(σ9 ◦ η16) = σ9 ◦ η2

16, η∗17(ν9) = ν3
9 by and

η∗17(ε9) = η9 ◦ ε10 by [18, (2.2)], [19, (5.5), (5.9), (7.10), (7.19), (7.20), Lemma
5.14, 6.6,]. Thus we have

Cokerη∗18 = Z4{σ9 ◦ ν16} ⊕ Z3

and

Kerη∗17 = 0.

Now we have a short exact sequence

0→ Z4{σ9 ◦ ν16} ⊕ Z3
Σ15p∗−−−−→ [Σ15CP 2, S9]

Σ15i∗−−−→ 0.

Thus we have

[Σ15CP 2, S9] = Z4{σ9 ◦ ν16 ◦ Σ15p} ⊕ Z3.

(3) Consider the following short exact sequence

0→ Cokerη∗19
Σ16p∗−−−−→ [Σ16CP 2, S10]

Σ16i∗−−−→ Kerη∗18 → 0,

where η∗19 : π19(S10)→ π20(S10) or, more precisely

η∗19 : Z{P (ι21)} ⊕ Z3
2{ν3

10, µ10, η10 ◦ ε11} → Z4{σ10 ◦ ν17} ⊕ Z2{η10 ◦ µ11} ⊕ Z3

and η∗18 : π18(S10)→ π19(S10) or, more precisely

η∗18 : Z2
2{ν10, ε10} → Z{4(ι21)} ⊕ Z3

2{ν3
10, µ10, η10 ◦ ε12}.

Then we have η∗19(P (ι21)) = P (η21) = 2σ10 ◦ ν17, η∗19(ν3
10) = 0, η∗19(µ10) =

η9 ◦ µ10, η∗19(η10 ◦ ε11) = 4ν10 ◦ σ13 = 0, η∗18(ν10) = ν3
10 and η∗18(ε10) = η10 ◦ ε11

by [18, (2.2)], [19, (5.9),(7.5),(7.10),(7.21), Lemma 6.3]. Thus we have

Cokerη∗19 = Z2{σ10 ◦ ν17} ⊕ Z3

and

Kerη∗18 = 0.

Now we have a short exact sequence

0→ Z2{σ10 ◦ ν17} ⊕ Z3
Σ16p∗−−−−→ [Σ16CP 2, S10]

Σ16i∗−−−→ 0.

Thus we have

[Σ16CP 2, S10] = Z2{σ10 ◦ ν17 ◦ Σ16p} ⊕ Z3.

(4) Consider the following short exact sequence

0→ Cokerη∗20
Σ17p∗−−−−→ [Σ17CP 2, S11]

Σ17i∗−−−→ Kerη∗19 → 0,
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where η∗20 : π20(S11)→ π21(S11) or, more precisely

η∗20 : Z3
2{ν3

11, µ11, η11 ◦ ε12} → Z2
2{σ11 ◦ ν18, η11 ◦ µ12} ⊕ Z3

and η∗19 : π19(S11)→ π20(S11) or, more precisely

η∗19 : Z2
2{ν11, ε11} → Z3

2{ν3
11, µ11, η11 ◦ ε12}.

Then we have η∗20(ν3
11) = 0, η∗20(µ11) = η10 ◦µ11, η∗20(η11 ◦ε12) = 4ν11 ◦σ14 = 0,

η∗19(ν11) = ν3
11 and η∗19(ε11) = η11 ◦ ε12 by [18, (2.2)], [19, (5.9), (7.5), (7.10),

Lemma 6.3]. Thus we have

Cokerη∗20 = Z2{σ11 ◦ ν18} ⊕ Z3

and
Kerη∗19 = 0.

Now we have a short exact sequence

0→ Z2{σ11 ◦ ν18} ⊕ Z3
Σ17p∗−−−−→ [Σ17CP 2, S11]

Σ17i∗−−−→ 0.

Thus we have

[Σ17CP 2, S11] = Z2{σ11 ◦ ν18 ◦ Σ17p} ⊕ Z3.

(5) Consider the following short exact sequence

0→ Cokerη∗21
Σ18p∗−−−−→ [Σ18CP 2, S12]

Σ18i∗−−−→ Kerη∗20 → 0,

where η∗21 : π21(S12)→ π22(S12) or, more precisely

η∗21 : Z3
2{ν3

12, µ12, η12 ◦ ε13} → Z2{η12 ◦ µ13} ⊕ Z3

and η∗20 : π20(S12)→ π21(S12) or, more precisely

η∗20 : Z2
2{ν12, ε12} → Z3

2{ν3
12, µ12, η12 ◦ ε13}.

Then we have η∗21(ν3
12) = 0, η∗21(µ12) = η12 ◦µ13, η∗21(η12 ◦ε13) = 4ν12 ◦σ15 = 0,

η∗20(ν12) = ν3
12 and η∗20(ε12) = η12 ◦ ε13 by [18, (2.2)], [19, (5.9), (7.5), (7.10),

Lemma 6.3]. Thus we have
Cokerη∗21 = Z3

and
Kerη∗20 = 0.

Now we have a short exact sequence

0→ Z3
Σ18p∗−−−−→ [Σ18CP 2, S12]

Σ18i∗−−−→ 0.

Thus we have
[Σ18CP 2, S12] = Z3{β1(12) ◦ Σ18p}.

By the Freudenthal suspension theorem, the suspension homomorphism

Σ : [Σn+6CP 2, Sn]→ [Σn+7CP 2, Sn+1]

is an isomorphism for n ≥ 12. Thus we have

[Σn+6CP 2, Sn] = Z3{β1(n) ◦ Σn+6p}. �
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From the above propositions, we have the following theorem.

Theorem 1. For n ≥ 2, the n-th cohomotopy group of (n+ 6)-fold suspended
complex projective plane has the following group structure.

case n 2 3 4 5 6 7
[Σn+6CP 2, Sn] 2 + 15 2 + 3 8 + 2 + 32 + 5 4 + 9 42 + 9 + 3 4 + 3

case n 8 9 10 11 n ≥ 12
[Σn+6CP 2, Sn] 42 + 32 4 + 3 2 + 3 2 + 3 2

4. [Σn+7CP 2, Sn] for n ≥ 2

In this section, we compute the n-th cohomotopy groups of (n + 7)-fold
suspended complex projective plane by using (2.1).

Proposition 6. (1) [Σ9CP 2, S2] = Z2{η2 ◦ ε′ ◦ Σ9p} ⊕ Z3.
(2) [Σ10CP 2, S3] = Z2

2{µ′ ◦ Σ10p, ε3 ◦ ν11 ◦ Σ10p} ⊕ Z3 ⊕ Z7.

Proof. (1) Consider the following short exact sequence

0→ Cokerη∗12
Σ9p∗−−−→ [Σ9CP 2, S2]

Σ9i∗−−−→ Kerη∗11 → 0,

where η∗12 : π12(S2)→ π13(S2) or, more precisely

η∗12 : Z2
2{η2

2 ◦ ε4, η2 ◦ µ3} → Z4{η2 ◦ ε′} ⊕ Z2
2{η2

2 ◦ µ4} ⊕ Z3

and η∗11 : π11(S2)→ π12(S2) or, more precisely

η∗11 : Z2{η2 ◦ ε3} → Z2
2{η2

2 ◦ ε4, η2 ◦ µ3}.
Then we have η∗12(η2

2 ◦ ε4) = η2 ◦ η2
3 ◦ ε5 = η2 ◦ (2ε′) = 2(η2 ◦ ε′), η∗12(η2 ◦ µ3) =

η2
2 ◦ µ4, η∗11(η2 ◦ ε3) = η2

2 ◦ ε4 by [18, (2.2)], [19, (7.5), (7.10)]. Thus we have

Cokerη∗12 = Z2{η2 ◦ ε′} ⊕ Z3

and

Kerη∗11 = 0.

Now we have a short exact sequence

0→ Z2{η2 ◦ ε′} ⊕ Z3
Σ9p∗−−−→ [Σ9CP 2, S2]

Σ9i∗−−−→ 0.

Thus we have

[Σ9CP 2, S2] = Z2{η2 ◦ ε′ ◦ Σ9p} ⊕ Z3.

(2) Consider the following short exact sequence

0→ Cokerη∗13
Σ10p∗−−−−→ [Σ10CP 2, S3]

Σ10i∗−−−→ Kerη∗12 → 0,

where η∗13 : π13(S3)→ π14(S3) or, more precisely

η∗13 : Z4{ε′} ⊕ Z2{η3 ◦ µ4} → Z4{µ′} ⊕ Z2
2{ε3 ◦ ν11, ν

′ ◦ ε6} ⊕ Z3 ⊕ Z7
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and η∗12 : π11(S2)→ π12(S2) or, more precisely

η∗12 : Z2
2{µ3, η3 ◦ ε4} → Z4{ε′} ⊕ Z2{η3 ◦ µ4}.

Then we have η∗13(ε′) = ν′ ◦ ε6, η∗13(η3 ◦ µ4) = 2µ′ , η∗12(µ3) = η3 ◦ µ4, and
η∗12(η3 ◦ ε4) = η2

3 ◦ ε5 = 2ε′ by [18, (2.2)], [19, (7.7), (7.10), (7.12)]. Thus we
have

Cokerη∗13 = Z2
2{µ′, ε3 ◦ ν11} ⊕ Z3 ⊕ Z7

and

Kerη∗12 = 0.

Now we have a short exact sequence

0→ Z2
2{µ′} ⊕ Z3 ⊕ Z7

Σ10p∗−−−−→ [Σ10CP 2, S3]
Σ10i∗−−−→ 0.

Thus we have

[Σ10CP 2, S3] = Z2
2{µ′ ◦ Σ10p, ε3 ◦ ν11 ◦ Σ10p} ⊕ Z3 ⊕ Z7. �

Proposition 7.

[Σ11CP 2, S4] = Z4{ν2
4 ◦ g10(C)}

⊕ Z3
2{Eµ′ ◦ Σ11p, ε4 ◦ ν12 ◦ Σ11p, ν4 ◦ ν7 ◦ Σ11p} ⊕ Z21.

There is a relation ν4 ◦ ε7 ◦ Σ11p = 2ν2
4 ◦ 2g10(C).

Proof. Consider the following short exact sequence

0→ Cokerη∗14
Σ11p∗−−−−→ [Σ11CP 2, S4]

Σ11i∗−−−→ Kerη∗13 → 0,

where η∗14 : π14(S4)→ π15(S4) or, more precisely

η∗14 : Z8{ν4 ◦ σ′} ⊕ Z4{Eε′} ⊕ Z2{η4 ◦ µ5} ⊕ Z2
3 ⊕ Z5 →

Z4{Eµ′} ⊕ Z5
2{Eµ′, ν4 ◦ σ′ ◦ η14, ν4 ◦ ν7, ν4 ◦ ε7, ε4 ◦ ν12, (Eν

′) ◦ ε7} ⊕ Z3 ⊕ Z5

and η∗13 : π13(S4)→ π14(S4) or, more precisely,

η∗13 : Z3
2{ν3

4 , µ4, η4 ◦ ε5} → Z8{ν4 ◦ σ′} ⊕ Z4{Eε′} ⊕ Z2{η4 ◦ µ5} ⊕ Z2
3 ⊕ Z5.

Then we have η∗14(ν4 ◦ σ′) = ν4 ◦ σ′ ◦ η14, η∗14(Eε′) = E(ε′ ◦ η13) = E(ν′ ◦
ε6) = (Eν′) ◦ ε7, η∗14(η4 ◦ µ5) = E(η2

3 ◦ µ5) = E(2µ′) = 2Eµ′, η∗13(ν3
4) = 0,

η∗13(µ4) = η4 ◦ µ5 and η∗13(η4 ◦ ε5) = E(η2
3 ◦ ε5) = E(2ε′) = 2Eε′ by [18, (2.2)],

[19, (5.9), (7.7), (7.10), (7.12)]. Thus we have

Cokerη∗14 = Z4
2{Eµ′, ν4 ◦ ν7, ν4 ◦ ε7, ε4 ◦ ν12} ⊕ Z3 ⊕ Z5

and

Kerη∗13 = Z2{ν3
4}.

So we have a short exact sequence

0→ Z4
2{Eµ′, ν4 ◦ ν7, ν4 ◦ ε7, ε4 ◦ ν12} ⊕ Z3 ⊕ Z5

Σ11p∗−−−−→ [Σ11CP 2, S4]
Σ11i∗−−−→ Z2{ν3

4} → 0.
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By [8, Proposition 3.3, 3.6], we have ν2
5 ◦2ι11 = ε5◦Σ9p. This implies a relation

2ν2
4 ◦ g10(C) = ν3

4 ◦ 2ι13 = ν4 ◦ ε7 ◦ Σ11p.

Thus we have

[Σ11CP 2, S4] = Z4{ν2
4 ◦ g10(C)}

⊕ Z3
2{Eµ′ ◦ Σ11p, ε4 ◦ ν12 ◦ Σ11p, ν4 ◦ ν7 ◦ Σ11p} ⊕ Z21. �

Proposition 8.

[Σ12CP 2, S5] = Z4{ζ5 ◦ Σ12p}
⊕ Z2

2{ν5 ◦ ν8 ◦ Σ12p, ν2
5 ◦ g11(C)} ⊕ Z7 ⊕ Z9.

Proof. Consider the following short exact sequence

0→ Cokerη∗15
Σ12p∗−−−−→ [Σ12CP 2, S5]

Σ12i∗−−−→ Kerη∗14 → 0,

where η∗15 : π15(S5)→ π16(S5) or, more precisely

η∗15 : Z8{ν5 ◦ σ8} ⊕ Z2{η5 ◦ µ6} ⊕ Z9 → Z8{ζ5} ⊕ Z2
2{ν5 ◦ ν8, ν5 ◦ ε8} ⊕ Z7 ⊕ Z9

and η∗14 : π14(S5)→ π15(S5) or, more precisely

η∗14 : Z3
2{ν3

5 , µ5, η5 ◦ ε6} → Z8{ν5 ◦ σ8} ⊕ Z2{η5 ◦ µ6} ⊕ Z9.

Then we have η∗15(ν5 ◦ σ8) = ν5 ◦ ε8, η∗15(η5 ◦ µ6) = 4ζ5, η∗14(ν3
5) = 0, η∗14(µ5) =

η5 ◦ µ6 and η∗14(η5 ◦ ε6) = 4(ν5 ◦ σ8) by [18, (2.2)], [19, p. 152, (5.9), (7.10),
(7.14)]. Thus we have

Cokerη∗15 = Z4{ζ5} ⊕ Z2{ν5 ◦ ν8} ⊕ Z7 ⊕ Z9

and
Kerη∗14 = Z2{ν3

5}.
So we have a short exact sequence

(4.1)
0→ Z4{ζ5} ⊕ Z2{ν5 ◦ ν8} ⊕ Z7 ⊕ Z9

Σ12p∗−−−−→ [Σ12CP 2, S5]
Σ12i∗−−−→ Z2{ν3

5} → 0.

Consider an EHP sequence

[Σ13CP 2, S9]
∆−→ [Σ11CP 2, S4]

E−→ [Σ12CP 2, S5]

H−→ [Σ12CP 2, S9]
∆−→ [Σ10CP 2, S4],

where [Σ13CP 2, S9] = Z4{ν9 ◦g12(C)}⊕Z2{ν9 ◦Σ13p}, [Σ11CP 2, S4] = Z4{ν2
4 ◦

g10}⊕Z3
2{Eµ′◦Σ11p, ε4◦ν12◦Σ11p, ν4◦ν7◦Σ11p}, [Σ12CP 2, S9] = Z16{σ9◦Σ12p}

and [Σ10CP 2, S4] = Z8{ν4 ◦ σ′ ◦ Σ10p} ⊕ Z2{Eε′ ◦ Σ10p} ⊕ Z2
3 ⊕ Z5. Then we

have
∆(ν9 ◦ g12(C)) = 2ν2

4 ◦ g10(C),

∆(ν9 ◦ Σ13p) = ε4 ◦ ν12Σ11p

and
∆(σ9 ◦ Σ12p) = (xν4 ◦ σ′ ± Eε′) ◦ Σ10p,



774 J.-H. LEE

where x is odd. Then we have a short exact sequence

0→ Z4
2{ν2

4 ◦ g10(C), Eµ′ ◦ Σ11p, ε4 ◦ ν12 ◦ Σ11p, ν4 ◦ ν ◦ Σ11p}
E−→ [Σ12CP 2, S5]

H−→ Z2{8σ9 ◦ Σ12p} → 0.

By [19, Lemma 6.7, (7.14)], we have H(ζ5) = 8σ9 and E2µ′ = 2ζ5. Thus we
obtain

[Σ12CP 2, S5] = Z4{ζ5 ◦ Σ12p} ⊕ Z2
2{ν5 ◦ ν8 ◦ Σ12p, ν2

5 ◦ g11(C)}. �

Proposition 9.

[Σ13CP 2, S6] = Z4{ζ6 ◦ Σ13p}
⊕ Z2

2{ν6 ◦ ν14 ◦ Σ13p, ν2
6 ◦ g12(C)} ⊕ Z63.

Proof. Consider the following short exact sequence

0→ Cokerη∗16
Σ13p∗−−−−→ [Σ13CP 2, S6]

Σ13i∗−−−→ Kerη∗15 → 0,

where η∗16 : π16(S6)→ π17(S6) or, more precisely

η∗16 : Z8{ν6 ◦ σ9} ⊕ Z2{η6 ◦ µ7} ⊕ Z9 → Z8{ζ6} ⊕ Z4{ν6 ◦ ν14} ⊕ Z7 ⊕ Z9

and η∗15 : π15(S6)→ π16(S6) or, more precisely

η∗15 : Z3
2{ν3

6 , µ6, η6 ◦ ε7} → Z8{ν6 ◦ σ9} ⊕ Z2{η6 ◦ µ7} ⊕ Z9.

Then we have η∗16(ν6 ◦σ9) = ν6 ◦ ε9 = 2ν6 ◦ν14, η∗16(η6 ◦µ7) = 4ζ6, η∗15(ν3
6) = 0,

η∗15(µ6) = η6 ◦µ7 and η∗15(η6 ◦ε7) = η2
6 ◦ε8 = 4(ν6 ◦σ9) by [18, (2.2)], [19, p. 70,

p. 152, (5.9), (7.10), (7.14)]. Thus we have

Cokerη∗16 = Z4{ζ6} ⊕ Z2{ν6 ◦ ν14} ⊕ Z7 ⊕ Z9

and
Kerη∗15 = Z2{ν3

6}.
Now we have a short exact sequence

0→ Z4{ζ6} ⊕ Z2{ν6 ◦ ν14} ⊕ Z7 ⊕ Z9
Σ13p∗−−−−→ [Σ13CP 2, S6]

Σ13i∗−−−→ Z2{ν3
6} → 0.

Thus we have a commutative diagram:

0 // Z4{ζ5} ⊕ Z2{ν5 ◦ ν8}
Σ12p∗ //

Σ1

��

[Σ12CP 2, S5]
Σ12i∗ //

Σ2

��

Z2{ν3
5} //

Σ3

��

0

0 // Z4{ζ6} ⊕ Z2{ν6 ◦ ν14}
Σ13p∗ // [Σ13CP 2, S6]

Σ13i∗ // Z2{ν3
6} // 0

Since the first row is split and Σ3 is an isomorphism, the second row also split.

[Σ13CP 2, S6] = Z4{ζ6 ◦ Σ13p} ⊕ Z2
2{ν6 ◦ ν14 ◦ Σ13p, ν2

6 ◦ g12(C)} ⊕ Z7 ⊕ Z9.
�

Lemma 1.

[Σ14CP 2, S7](2)
∼= [Σ15CP 2, S8](2)

∼= [Σ16CP 2, S9](2).



HOMOTOPY PROPERTIES OF map(ΣnCP 2, Sm) 775

Proof. By (2.4) and Proposition 3.2 of [8], we have

[Σ14CP 2, S7] ∼= [Σ15CP 2, S8].

Consider the following EHP sequence

[Σ17CP 2, S17](2)
4−→ [Σ15CP 2, S8](2)

E−→ [Σ16CP 2, S9](2)

H−→ [Σ16CP 2, S17](2)
4−→ [Σ14CP 2, S8](2),

where [Σ17CP 2, S17] = 0 [8, Proposition 3.2], [Σ16CP 2, S17](2) = Z4{ν17◦Σ16p}
[8, Proposition 3.1] and [Σ14CP 2, S8](2) = Z2

4{σ8 ◦ ν15 ◦ Σ14p, ν8 ◦ σ11 ◦ Σ14p}
by Proposition 5. By exactness we have E : [Σ15CP 2, S8](2) → [Σ16CP 2, S9](2)

is injective. By (7.19) of [19] we have

4(ν17 ◦ Σ16p) = 4(ν17) ◦ Σ14p = 2σ8 ◦ ν15 ◦ Σ14p− xν8 ◦ σ11 ◦ Σ14p,

where x is odd. Thus 4 : [Σ16CP 2, S17](2) → [Σ14CP 2, S8](2) is injective, so

that E : [Σ15CP 2, S8] → [Σ16CP 2, S9] is surjective. Therefore the homomor-
phism E : [Σ15CP 2, S8](2) → [Σ16CP 2, S9](2) is an isomorphism. �

Proposition 10. (A) [Σ14CP 2, S7] = Z8{σ′ ◦ η2
14 + η7 ◦ ε8} ⊕ Z2

2{ν7 ◦ ν15 ◦
Σ14p, ν2

7 ◦ g13(C)}.
Relation: 2σ′ ◦ η2

14 + η7 ◦ ε8 = aζ7 ◦ Σ14p for a odd.

(B) [Σ15CP 2, S8] = Z8{(Eσ′) ◦ η2
15 + η8 ◦ ε9}⊕Z2

2{ν8◦ν16◦Σ15p, ν2
8◦g14(C)}.

Relation: 2(Eσ′) ◦ η2
15 + η8 ◦ ε9 = aζ8 ◦ Σ15p for a odd.

(C) [Σ16CP 2, S9] = Z8{η9 ◦ ε10} ⊕ Z2
2{ν9 ◦ ν17 ◦ Σ16p, ν2

9 ◦ g15(C)}.
Relation: 2η9 ◦ ε10 = aζ9 ◦ Σ16p for a odd.

Proof. (A) Consider the following short exact sequence

0→ Cokerη∗17
Σ14p∗−−−−→ [Σ14CP 2, S7]

Σ14i∗−−−→ Kerη∗16 → 0,

where η∗17 : π17(S7)→ π18(S7) or, more precisely

η∗17 : Z8{ν7 ◦ σ10} ⊕ Z2{η7 ◦ µ8} ⊕ Z3 → Z8{ζ7} ⊕ Z2{ν7 ◦ ν15} ⊕ Z7 ⊕ Z9

and η∗16 : π16(S7)→ π17(S7) or, more precisely

η∗16 : Z4
2{σ′ ◦ η2

14, ν
3
7 , µ7, η7 ◦ ε8} → Z8{ν7 ◦ σ10} ⊕ Z2{η7 ◦ µ8} ⊕ Z3.

Then we have η∗17(ν7 ◦ σ10) = ν7 ◦ ε10, η∗17(η7 ◦ µ8) = 4ζ6, η∗16(σ′ ◦ η2
14) =

σ′ ◦ η3
14 = σ′ ◦ 4ν14 = 4σ′ ◦ ν14 = 4(ν7 ◦ σ10), η∗16(ν3

7) = 0, η∗16(µ7) = η7 ◦µ8 and
η∗16(η7 ◦ ε8) = 4(ν7 ◦σ10) by [18, (2.2)], [19, p. 152, (5.5), (7.10), (7.14), (7.19)].
Thus we have

Cokerη∗17 = Z4{ζ7} ⊕ Z2{ν7 ◦ ν15} ⊕ Z7 ⊕ Z9

and
Kerη∗16 = Z2

2{ν3
7 , σ
′ ◦ η2

14 + η7 ◦ ε8}.
Thus we have a short exact sequence

0→ Z4{ζ7} ⊕ Z2{ν7 ◦ ν15} ⊕ Z63
Σ14p∗−−−−→ [Σ14CP 2, S7]
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Σ14i∗−−−→ Z2
2{ν3

7 , σ
′ ◦ η2

14 + η7 ◦ ε8} → 0.

(B) Consider the following short exact sequence

0→ Cokerη∗18
Σ15p∗−−−−→ [Σ15CP 2, S8]

Σ15i∗−−−→ Kerη∗17 → 0,

where η∗18 : π18(S8)→ π19(S8),

η∗18 : Z2
8{σ8 ◦ν15, ν8 ◦σ11}⊕Z2{η8 ◦µ9}⊕Z2

3 → Z8{ζ8}⊕Z2{ν8 ◦ν16}⊕Z7⊕Z9

and η∗17 : π17(S8)→ π18(S8),

η∗17 : Z5
2{σ8 ◦ η2

15, (Eσ
′) ◦ η2

15, ν
3
8 , µ8, η8 ◦ ε9} → Z2

8{σ8 ◦ ν15, ν8 ◦ σ11} ⊕ Z2{η8 ◦ µ9} ⊕ Z2
3.

Then we have η∗18(σ8 ◦ν15) = 0, η∗18(ν8 ◦σ11) = ν8 ◦σ11 ◦η18 = ν8 ◦η11 ◦σ12 = 0,
η∗18(η8 ◦ µ9) = 4ζ8, η∗17(σ8 ◦ η2

15) = σ8 ◦ η3
15 = σ8 ◦ 4ν15 = 4σ8 ◦ ν15, η∗17((Eσ′) ◦

η2
15) = 4ν8 ◦ σ11, η∗17(ν3

8) = 0, η∗17(µ8) = η8 ◦ µ9 and η∗17(η8 ◦ ε9) = 4(ν8 ◦ σ11)
by [18, (2.2)], [19, Lemma 6.4, (5.9), (7.5), (7.10), (7.14)]. Thus we have

Cokerη∗18 = Z4{ζ8} ⊕ Z2{ν8 ◦ ν16} ⊕ Z7 ⊕ Z9.

and
Kerη∗17 = Z2

2{ν3
8 , (Eσ

′) ◦ η2
15 + η8 ◦ ε9}.

Thus we have a short exact sequence

0→ Z4{ζ8} ⊕ Z2{ν8 ◦ ν16} ⊕ Z7 ⊕ Z9
Σ15p∗−−−−→ [Σ15CP 2, S8]

Σ15i∗−−−→ Z2
2{ν3

8 , (Eσ
′) ◦ η2

15 + η8 ◦ ε9} → 0.

(C) Consider the following short exact sequence

0→ Cokerη∗19
Σ16p∗−−−−→ [Σ16CP 2, S9]

Σ16i∗−−−→ Kerη∗18 → 0,

where η∗19 : π19(S9)→ π20(S9) or, more precisely

η∗19 : Z8{σ9 ◦ ν16} ⊕ Z2{η9 ◦ µ10} ⊕ Z3 → Z8{ζ8} ⊕ Z2{ν8 ◦ ν16} ⊕ Z7 ⊕ Z9

and η∗18 : π18(S9)→ π19(S9) or, more precisely

η∗18 : Z4
2{σ9 ◦ η2

16, ν
3
9 , µ9, η9 ◦ ε10} → Z8{σ9 ◦ ν16} ⊕ Z2{η9 ◦ µ10} ⊕ Z3.

Then we have η∗19(σ9 ◦ ν16) = 0, η∗19(η9 ◦ µ10) = 4ζ9, η∗18(σ9 ◦ η2
16) = σ9 ◦ η3

16 =
σ9◦4ν16 = 4σ9◦ν16, η∗18(ν3

9) = 0, η∗18(µ9) = η9◦µ10 and η∗18(η9◦ε10) = 4(ν9◦σ12)
by [18, (2.2)], [19, Lemma 6.4, (5.5), (5.9), (7.5), (7.10), (7.14)]. Thus we have

Cokerη∗19 = Z4{ζ9} ⊕ Z2{ν9 ◦ ν17} ⊕ Z7 ⊕ Z9

and
Kerη∗18 = Z2

2{ν3
9 , η9 ◦ ε10}.

Thus we have a short exact sequence

0→ Z4{ζ9} ⊕ Z2{ν9 ◦ ν17} ⊕ Z7 ⊕ Z9
Σ16p∗−−−−→ [Σ16CP 2, S9]

Σ16i∗−−−→ Z2
2{ν3

9 , η9 ◦ ε10} → 0.
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In the proof of [Σ15CP 2, S8], there is an extension (Eσ′) ◦ η2
15 + η8 ◦ ε9 ∈

[Σ15CP 2, S8] of (Eσ′) ◦ η2
15 + η8 ◦ ε9. By [19, Lemma 5.14, (2.1)] we have

E((Eσ′) ◦ η2
15) = (E2σ′) ◦ η2

16 = (2σ9) ◦ η2
16 = σ9 ◦ (2η2

16) = 0.

Thus we obtain

E((Eσ′) ◦ η2
15 + η8 ◦ ε9) = η9 ◦ ε10.

This implies that 2η9 ◦ ε10 = 2ι9 ◦ η9 ◦ ε10 by [19, (2.1)]. By [19, Proposition
1.9, Lemma 9.1] we have

2ι9◦η9 ◦ ε10 ∈ {2ι9, η9◦ε10, η18}◦Σ16p 3 ζ9◦Σ16p mod 2ζ9◦Σ16p, ν9◦ν17◦Σ16p

that is,

2η9 ◦ ε10 ≡ aζ9 ◦ Σ16p mod ν9 ◦ ν17 ◦ Σ16p

for a odd. Since 2(ν2
9 ◦ ν15) = 2(ν2

9 ◦ Eν14) = (2ν2
9) ◦ ν15 = 0 by [19, (2.1)],

ν2
9 ◦ ν15 is of order 2.

Thus we have

[Σ16CP 2, S9] = Z8{η9 ◦ ε10} ⊕ Z2
2{ν9 ◦ ν17 ◦ Σ16p, ν2

9 ◦ g15(C)} ⊕ Z7 ⊕ Z9.

By Lemma 1, we have

[Σ14CP 2, S7] = Z8{σ′ ◦ η2
14 + η7 ◦ ε8}⊕Z2

2{ν7◦ν15◦Σ14p, ν2
7 ◦g13(C)}⊕Z7⊕Z9

and

[Σ15CP 2, S8] = Z8{(Eσ′) ◦ η2
15 + η8 ◦ ε9} ⊕ Z2

2{ν8 ◦ ν16 ◦ Σ15p, ν2
8 ◦ g14(C)} ⊕ Z7 ⊕ Z9.

�

Proposition 11. (1) [Σ17CP 2, S10] = Z{P (ι21)} ⊕ Z8{η10 ◦ ε11} ⊕ Z2{ν2
10 ◦

ν16} ⊕ Z63.
(2) [Σ18CP 2, S11] = Z8{η11 ◦ ε12} ⊕ Z2{ν2

11 ◦ ν17} ⊕ Z63.
(3) [Σ19CP 2, S12] = Z{P (ι25) ◦Σ19p}⊕Z8{η12 ◦ ε13}⊕Z2{ν2

12 ◦ ν18}⊕Z63.
(4) For n ≥ 13, [Σn+7CP 2, Sn] = Z8{ηn ◦ εn+1} ⊕ Z2{ν2

n ◦ νn+6} ⊕ Z63.

Proof. (1) Consider the following short exact sequence

0→ Cokerη∗20
Σ17p∗−−−−→ [Σ17CP 2, S10]

Σ17i∗−−−→ Kerη∗19 → 0,

where η∗20 : π20(S10)→ π21(S10) or, more precisely

η∗20 : Z4{σ10 ◦ ν17} ⊕ Z2{η10 ◦ µ11} ⊕ Z3 → Z8{ζ10} ⊕ Z7 ⊕ Z9

and η∗19 : π19(S10)→ π20(S10) or, more precisely

η∗19 : Z{4(ι21)} ⊕ Z3
2{ν3

10, µ10, η10 ◦ ε11} → Z4{σ10 ◦ ν17} ⊕ Z2{η10 ◦ µ11} ⊕ Z3.

Then we have η∗20(σ10 ◦ ν17) = 0, η∗20(η10 ◦µ11) = 4ζ10, η∗19(P (ι21)) = P (η21) =
2σ10◦ν17, η∗19(ν3

10) = 0, η∗19(µ10) = η10◦µ11 and η∗19(η10◦ε11) = 4(ν10◦σ13) = 0
by [18, (2.2)], [19, Lemma 6.4, (5.5), (5.9), (7.5), (7.10), (7.14), (7.21)]. Thus
we have

Cokerη∗20 = Z4{ζ10} ⊕ Z7 ⊕ Z9
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and
Kerη∗19 = Z{2P (ι21)} ⊕ Z2

2{ν3
10, η10 ◦ ε11}.

Thus we have a short exact sequence

0→ Z4{ζ10} ⊕ Z63
Σ17p∗−−−−→ [Σ17CP 2, S10]

Σ17i∗−−−→ Z{2P (ι21)} ⊕ Z2
2{ν3

10, η10 ◦ ε11} → 0.

By Proposition 10, we have

2η10 ◦ ε11 = E(2η9 ◦ ε10) = aζ10 ◦ Σ17p,

where a odd.
(2) Consider the following short exact sequence

0→ Cokerη∗21
Σ18p∗−−−−→ [Σ18CP 2, S11]

Σ18i∗−−−→ Kerη∗20 → 0,

where η∗21 : π21(S11)→ π22(S11) or, more precisely

η∗21 : Z2
2{σ11 ◦ ν18, η11 ◦ µ12} ⊕ Z3 → Z8{ζ11} ⊕ Z7 ⊕ Z9

and η∗20 : π20(S11)→ π21(S11) or, more precisely

η∗20 : Z3
2{ν3

11, µ11, η11 ◦ ε12} → Z2
2{σ11 ◦ ν18, η11 ◦ µ12} ⊕ Z3.

Then we have η∗21(σ11 ◦ν18) = 0, η∗21(η11 ◦µ12) = 4ζ11, η∗20(ν3
11) = 0, η∗20(µ11) =

η11 ◦ µ12 and η∗20(η11 ◦ ε12) = 4(ν11 ◦ σ14) = 0 by [18, (2.2)], [19, (5.9), (7.10),
(7.14), (7.20)]. Thus we have

Cokerη∗21 = Z4{ζ11} ⊕ Z7 ⊕ Z9

and
Kerη∗20 = Z2

2{ν3
11, η11 ◦ ε12}.

Thus we have a short exact sequence

0→ Z4{ζ11} ⊕ Z7 ⊕ Z9
Σ18p∗−−−−→ [Σ18CP 2, S11]

Σ18i∗−−−→ Z2
2{ν3

11, η11 ◦ ε12} → 0.

By Proposition 10, we have 2η11 ◦ ε12 = aζ11 ◦ Σ18p where a odd. Since ν2
11

has order 2, we have ν2
11 ◦ ν17 has order 2.

(3) Consider the following short exact sequence

0→ Cokerη∗22
Σ19p∗−−−−→ [Σ19CP 2, S12]

Σ19i∗−−−→ Kerη∗21 → 0,

where η∗22 : π22(S12)→ π23(S12) or, more precisely

η∗22 : Z2{η12 ◦ µ13} ⊕ Z3 → Z{P (ι25)} ⊕ Z8{ζ12} ⊕ Z7 ⊕ Z9

and η∗21 : π21(S12)→ π22(S12) or, more precisely

η∗21 : Z3
2{ν3

12, µ12, η12 ◦ ε13} → Z2{η12 ◦ µ13} ⊕ Z3.

Then we have η∗21(η12 ◦ µ13) = 4ζ12, η∗20(ν3
12) = 0, η∗20(µ12) = η12 ◦ µ13 and

η∗20(η12 ◦ ε13) = 4(ν12 ◦ σ15) = 0 by [18, (2.2)], [19, (5.9), (7.10), (7.14), (7.20)].
Thus we have

Cokerη∗22 = Z{P (ι25)} ⊕ Z4{ζ12} ⊕ Z7 ⊕ Z9
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and

Kerη∗21 = Z2
2{ν3

12, η12 ◦ ε13}.

Thus we have a short exact sequence

0→ Z{P (ι25)} ⊕ Z4{ζ11} ⊕ Z7 ⊕ Z9
Σ19p∗−−−−→ [Σ19CP 2, S12]

Σ19i∗−−−→ Z2
2{ν3

12, η12 ◦ ε13} → 0.

By Proposition 10, we have 2η12 ◦ ε13 = aζ12 ◦ Σ19p where a odd. Since ν2
12

has order 2, we have ν2
12 ◦ ν18 has order 2.

(4) Consider the following short exact sequence

0→ Cokerη∗23
Σ20p∗−−−−→ [Σ20CP 2, S13]

Σ20i∗−−−→ Kerη∗22 → 0,

where η∗23 : π23(S13)→ π24(S13) or, more precisely

η∗23 : Z2{η13 ◦ µ14} ⊕ Z3 → Z8{ζ13} ⊕ Z7 ⊕ Z9

and η∗22 : π22(S13)→ π23(S13) or, more precisely

η∗22 : Z3
2{ν3

13, µ13, η13 ◦ ε14} → Z2{η13 ◦ µ14} ⊕ Z3.

Then we have η∗22(η13 ◦ µ14) = 4ζ13, η∗21(ν3
13) = 0, η∗21(µ13) = η13 ◦ µ14 and

η∗21(η13 ◦ ε14) = 4(ν13 ◦ σ16) = 0 by [18, (2.2)], [19, (5.9), (7.10), (7.14), (7.20)].
Thus we have

Cokerη∗23 = Z4{ζ13} ⊕ Z7 ⊕ Z9

and

Kerη∗22 = Z2
2{ν3

13, η13 ◦ ε14}.

Thus we have a short exact sequence

0→ Z4{ζ13} ⊕ Z7 ⊕ Z9
Σ20p∗−−−−→ [Σ20CP 2, S13]

Σ20i∗−−−→ Z2
2{ν3

13, η13 ◦ ε14} → 0.

By (3), we see that 2η12 ◦ ε13 = aζ12 ◦ Σ19p where a odd. Thus we have
2η13 ◦ ε14 = aζ13 ◦ Σ20p where a odd. Since ν2

13 has order 2, we have ν2
13 ◦ ν19

has order 2. By the Freudenthal suspension theorem, the suspension homo-
morphism

Σ : [Σn+7CP 2, Sn]→ [Σn+8CP 2, Sn+1]

is an isomorphism for n ≥ 13. �

From the above propositions, we have the following theorem.

Theorem 2. For n ≥ 2, the n-th cohomotopy group of (n+ 7)-fold suspended
complex projective plane has the following group structure.
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case n 2 3 4 5 6

[Σn+7CP 2, Sn] 2 + 3 22 + 21 23 4 + 2 + 63 4 + 22 + 63

case n 7 8 9 10 11

[Σn+7CP 2, Sn] 8 + 22 8 + 22 8 + 22 ∞+ 8 + 2 + 63 8 + 2 + 63

case n 12 n ≥ 13

[Σn+6CP 2, Sn] ∞+ 8 + 2 + 63 8 + 2 + 63

5. Homotopy groups of map∗(CP 2,CP 2, ∗)

It is well known that CP 2 is a base space of a S1-bundle

S1 → S5 p−→ CP 2.

Thus we have an isomorphism

p∗ : [ΣnCP 2, S5]→ [ΣnCP 2,CP 2].

Also we have an isomorphism

πn(map∗(CP 2,CP 2; ∗)) ∼= [ΣnCP 2,CP 2]

by adjointness [12]. McGibbon [15] showed that homotopy class [CPn,CPn] ∼=
Z which is determined by using homomorphism between homology groups. We
denote the homotopy group πn(map∗(CP 2,CP 2; ∗)) by πn(map∗(CP 2,CP 2)).
By the results of Sections 3 and 4 and [8] we obtain the following:

Theorem 3.

(1) π4(map∗(CP 2,CP 2)) ∼= Z4{ν5 ◦ Σ4p} ⊕ Z3{α1(5) ◦ Σ4p}.
(2) π5(map∗(CP 2,CP 2)) ∼= 0.

(3) π6(map∗(CP 2,CP 2)) ∼= Z4{ν5 ◦ 2ι8} ⊕ Z3{α1(5)}.
(4) π7(map∗(CP 2,CP 2)) ∼= Z2{ν2

5 ◦ Σ7p}.
(5) π8(map∗(CP 2,CP 2)) ∼= Z4{ν5 ◦ η2

8}⊕Z3{α2(5) ◦Σ8p}⊕Z5{α′1(5) ◦Σ8p}.
(6) π9(map∗(CP 2,CP 2)) ∼= Z4{ν5 ◦ ν8}.
(7) π10(map∗(CP 2,CP 2)) ∼= Z2{ν3

5 ◦Σ10p}⊕Z4{σ′′′}⊕Z3{α2(5)}⊕Z5{α′1(5)}.
(8) π11(map∗(CP 2,CP 2)) ∼= Z4{ν5 ◦ σ8 ◦ Σ11p} ⊕ Z9{β1(5) ◦ Σ11p}.
(9) π12(map∗(CP 2,CP 2)) ∼= Z4{ζ5 ◦ Σ12p} ⊕ Z2

2{ν5 ◦ ν8 ◦ Σ12p, ν2
5 ◦ ν11}

⊕ Z9{α′3(5) ◦ Σ12p} ⊕ Z7

.

6. Applications: Classifying path-components of mapping spaces
and cyclic maps

In this section, we apply the results obtained in Sections 3 and 4 to the clas-
sification of components of mapping spaces and the computation of generalized
Gottlieb groups.

The term fibration is used for a Hurewicz fibration, that is a (not necessarily
surjective) map with the homotopy lifting property with respect to all spaces
[14, p. 49]. It is well known that the evaluation map wf : map(X,Y ; f) → Y ,
wf (g) = g(∗), is a fibration [5, Lemma 8.15]. For fibrations p : E1 → B and
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q : E2 → B, p and q are said to be fiber homotopy equivalent if there is a
homotopy equivalence h : E1 → E2 such that q ◦ h = p [14, p. 52].

Here we remind several results of the generalized Whitehead product. If α
and β are homotopy classes, then the whitehead product of α and β is denoted
by [α, β].

A map f : X → Y is cyclic if there is a map F : X×Y → Y , called affiliated
map, such that F (x, ∗) = f(x) and F (∗, y) = y. We denote the set of cyclic
map from X to Y by G(X,Y ) and it has group structure if X is a co-H-group
[20].

We recall the following equivalent statements due to [6, Lemma 2] and [10,
Theorem 3.7]:

Theorem 4. Let ΣX and ΣY be CW complexes with non-degenerate basepoints
and ΣX is finite CW complex. Then the following are equivalent.

(A) the map f : ΣX → ΣY is cyclic.
(B) [f, idΣY ] = 0 where [ , ] is the generalized Whitehead product.
(C) the evaluation fibration wf : map(ΣX,ΣY ; f)→ ΣY has a section.
(D) the evaluation fibration wf : map(ΣX,ΣY ; f) → ΣY is fibre-homotopy

equivalent to w0 : map(ΣX,ΣY ; ∗)→ Y .

Here is a connection of path components of mapping spaces and cyclic maps.

Theorem 5 ([11, Theorem 3.10]). Suppose X is a CW co-H-space and Y is
any CW complex. Let d ∈ G(X,Y ) be any cyclic map. Then for each map
f : X → Y , we have map(X,Y ; f) ' map(X,Y ; f + d). If X is a finite
co-H-space then the corresponding evaluation fibrations wf and wf+d are fibre-
homotopy equivalent.

The following theorem shows a relation between the generalized Whitehead
product and evaluation fibration [6, Theorem 1].

Theorem 6. Given a pair of homotopy classes α = [f ], β = [g] ∈ [ΣA,ΣB]
such that at least one of the identities [α, ιΣB ] = ±[β, ιΣB ] holds. Then the
evaluation fibrations wf : map(ΣA,ΣB; f)→ ΣB) and wg : map(ΣA,ΣB; g)→
ΣB) are fibre homotopy equivalent.

The following is useful to compute generalized Whitehead product [17].

Remark 1. Let α ∈ [ΣK,X], β ∈ [ΣL,X], γ ∈ [P,X] and δ ∈ [Q,L] where
K,L, P and Q are polyhedra. Then we have

[α ◦ Σγ, β ◦ Σδ] = [α, β] ◦ Σ(γ ∧ δ).

We also recall a property of the generalized Whitehead product for H-spaces.

Theorem 7 ([1, Proposition 3.1]). If X is an H-space, then [α, β] = 0 for all
α ∈ [ΣA,X] and β ∈ [ΣB,X].

We recall Proposition 4.4 of [8].
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Proposition 12. (1) [ΣCP 2, S2] ∼= Z{η2 ◦ 2ι3}.
(2) [Σ2CP 2, S3] ∼= Z2{ν′ ◦ Σ2p} ⊕ Z3{α1(3) ◦ Σ2p}.
(3) [Σ3CP 2, S4] ∼= Z{ν4 ◦ Σ3p} ⊕ Z2{Σν′ ◦ Σ3p} ⊕ Z3{α1(4) ◦ Σ3p}.
(4) [ΣnCP 2, Sn+1] ∼= Z4{νn+1 ◦ Σnp} ⊕ Z3{α1(n+ 1) ◦ Σnp} for n ≥ 4.

Let G be an abelian group and S be a subset of G. Let 〈S〉 denote the
subgroup of G that is the smallest subgroup containing S. Then we have the
following theorem.

Theorem 8. (1) For each [f ], [g] ∈ [ΣCP 2, S2], the evaluation fibrations
wf : map(ΣCP 2, S2; f) → S2 and wg : map(ΣCP 2, S2; g) → S2 are
fibre homotopy equivalent.

(2) For each [f ], [g] ∈ [Σ2CP 2, S3], the evaluation fibrations
wf : map(Σ2CP 2, S3; f) → S3 and wg : map(Σ2CP 2, S3; g) → S3 are
fibre homotopy equivalent.

(3) The mapping space map(Σ3CP 2, S4) has three different path compo-
nents up to homotopy equivalent as follows:
(a) For each [f ], [g] ∈

〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
, the evaluation fibrations

wf : map(Σ3CP 2, S4; f)→ S4 and wg : map(Σ3CP 2, S4; g)→ S4

are fibre homotopy equivalent.
(b) For each [f ] ∈ {(2n+ 1)ν4 ◦ Σ3p |n ∈ Z} and

[g] ∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
, the evaluation fibrations

wf : map(Σ3CP 2, S4; f) → S4 and wf+g : map(Σ3CP 2, S4; f +
g)→ S4 are fibre homotopy equivalent.

(c) For each [f ] ∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
and [h] ∈

〈
α1(4) ◦ Σ3p

〉
, the

evaluation fibrations wh : map(Σ3CP 2, S4; f) → S4 and wh+f :
map(Σ3CP 2, S4;h+ f)→ S4 are fibre homotopy equivalent.

(4) For each [f ], [g] ∈ [Σ4CP 2, S5], the evaluation fibrations
wf : map(Σ4CP 2, S5; f) → S5 and wg : map(Σ4CP 2, S5; g) → S5 are
fibre homotopy equivalent.

(5) The mapping space map(Σ5CP 2, S6) has three different path compo-
nents up to homotopy equivalent as follows:
(a) The evaluation fibrations w∗ : map(Σ5CP 2, S6; ∗) → S6 and wf :

map(Σ5CP 2, S6; f) → S6 are fiber homotopy equivalent where
[f ] = 2ν6 ◦ Σ5p.

(b) For each [f ] ∈ {ν6 ◦ Σ5p, 3ν6 ◦ Σ5p} and [g] = 2ν6 ◦ Σ5p,
the evaluation fibrations wf : (Σ5CP 2, S6; f) → S6 and wf+g :
(Σ5CP 2, S6; f + g)→ S6 are fibre homotopy equivalent.

(c) For each [f ] ∈
〈
α1(6) ◦ Σ5p

〉
and [g] = 2ν6 ◦ Σ5p, the evaluation

fibrations wf : (Σ5CP 2, S6; f) → S6 and wf+g : (Σ5CP 2, S6; f +
g)→ S6 are fibre homotopy equivalent.

(6) For each [f ], [g] ∈ [Σ6CP 2, S7], the evaluation fibrations
wf : map(Σ6CP 2, S7; f) → S7 and wg : map(Σ6CP 2, S7; g) → S7 are
fibre homotopy equivalent.
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(7) The mapping space map(Σ7CP 2, S8) has four different path components
up to homotopy equivalent as follows:
(a) w∗ : map(Σ7CP 2, S8; ∗)→ S8.
(b) Two evaluation fibrations wf : map(Σ7CP 2, S8; f) → S8 and

wg : map(Σ7CP 2, S8; g)→ S8 are fibre homotopy equivalent where
[f ] = ν8 ◦ Σ7p and [g] = 3ν8 ◦ Σ7p.

(c) wh : map(Σ7CP 2, S8;h)→ S8 where [h] = 2ν8 ◦ Σ7p.
(d) Two evaluation fibrations wf : map(Σ7CP 2, S8; f) → S8 and

wg : map(Σ7CP 2, S8; g)→ S8 are fibre homotopy equivalent where
[f ] = α1(9) ◦ Σ7p and [g] = 2α1(9) ◦ Σ7p.

(8) The mapping space map(Σ8CP 2, S9) has two different path components
up to homotopy equivalent as follows:
(a) For each [f ], [g] ∈

〈
α1(9) ◦ Σ8p, 2ν9 ◦ Σ8p

〉
,

the evaluation fibrations wf : map(Σ7CP 2, S8; f) → S8 and wg :
map(Σ7CP 2, S8; g)→ S8 are fibre homotopy equivalent.

(b) For each [f ] ∈ {ν9 ◦ Σ8p, 3ν9 ◦ Σ8p} and
[g] ∈

〈
α1(9) ◦ Σ8p, 2ν9 ◦ Σ8p

〉
, the evaluation fibrations

wf : map(Σ7CP 2, S8; f) → S8 and wf+g : map(Σ7CP 2, S8; g) →
S8 are fibre homotopy equivalent.

Proof. (1) By [3, (2.1)] we have [ι2, η2] = 0. By [3, Lemma 1.1] we have
[ι2, η2 ◦ 2ι3] = 0. By Theorem 4 we have η2 ◦ 2ι3 is cyclic.

(2) Since S3 is an H-space, we have G2(CP 2, S3) = [Σ2CP 2, S3].
(3) We have

[ι4, ν4 ◦ Σ3p] = [ι4, ν4] ◦ Σ(ι3 ∧ Σ2p) = 2ν2
4 ◦ Σ6p 6= 0

and

[ι4,Σν
′ ◦ Σ3p] = [ι4,Σν

′] ◦ Σ(ι3 ∧ Σ2p) = 4ν2
4 ◦ Σ6p = 0

by (2.5) of [3] and Proposition 3.4 of [8]. By Theorem 4, Theorem 5 and
[10, Theorem 3.10] we have (a) and (b). Finally we have

[ι4, α1(4) ◦ Σ3p] = [ι4, α1(4)] ◦ Σ(ι3 ∧ Σ2p) = [ι4, ι4] ◦ α1(7) ◦ Σ6p.

By [8, Proposition 3.4] [ι4, ι4] ◦ α1(7) ◦ Σ6p has order 3. By biaddivitity of
generalized Whitehead product we have

[ι4, 2α1(4) ◦ Σ3p] = [ι4,−α1(4) ◦ Σ3p] = −[ι4, α1(4) ◦ Σ3p].

By Theorem 5 and [10, Theorem 3.10] we have (c).
(4) We have

[ι5, ν5 ◦ Σ4p] = [ι5, ν5] ◦ Σ(ι4 ∧ Σ3p) = 0

by [3, (2.6)] and Theorem 5. Also we have

[ι5, α1(5) ◦ Σ4p] = [ι5, α1(5)] ◦ Σ(ι4 ∧ ◦Σ3p) = 0

since G8(S5) = π8(S5) [3, p. 428] and Theorem 5.
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(5) We have

[ι6, ν6 ◦ Σ5p] = [ι6, ν6] ◦ Σ(ι5 ∧ Σ4p) = 2ν6 ◦ Σ10p 6= 0

by [19, Lemma 6.2] and [8, Proposition 3.7]. Since ν6◦Σ10p has order 4, we have
[ι6, 3ν6 ◦Σ5p] = [ι6,−ν6 ◦Σ5p] = −[ι6, ν6 ◦Σ5p] and [ι6, 2ν6 ◦Σ5p] = 0 = [ι6, ∗].
Also we have that

[ι6, α1(6) ◦ Σ5p] = [ι6, α1(6)] ◦ Σ(ι5 ∧ Σ4p) = [ι6, ι6] ◦ α1(11) ◦ Σ10p

has order 3 in [Σ10CP 2, S6] [8, Proposition 3.7]. By biadditivity of generalized
Whitehead product we have

[ι6, 2α1(6) ◦ Σ5p] = [ι6,−α1(6) ◦ Σ5p] = −[ι6, α1(6) ◦ Σ5p].

Thus we conclude that

map(Σ5CP 2, S6; ν6 ◦ Σ5p) 'f map(Σ5CP 2, S6; 3ν6 ◦ Σ5p)

map(Σ5CP 2, S6; 2ν6 ◦ Σ5p) 'f map(Σ5CP 2, S6; ∗)
map(Σ5CP 2, S6;α1(6) ◦ Σ5p) 'f map(Σ5CP 2, S6;α1(6) ◦ Σ5p+ 2ν6 ◦ Σ5p)

by Theorem 6.
(6) Since S7 is an H-space, we have G(Σ2CP 2, S3) = [Σ2CP 2, S3].
(7) We have

[ι8, ν8 ◦ Σ7p] = [ι8, ν8] ◦ Σ(ι7 ∧ Σ6p) = 2σ8 ◦ ν15 ◦ Σ14p− xν8 ◦ σ11 ◦ Σ14p 6= 0,

where x is an odd by [3, (2.9)] and Proposition 5. By Proposition 12, we have
[ι8, ν8 ◦ Σ7p] is of order 4. By Proposition 5 we have [ι8, ν8 ◦ Σ7p] 6= 0 and
±[ι8, 2ν8 ◦ Σ7p] 6= 0 and

[ι8, 3ν8 ◦ Σ7p] = [ι8,−ν8 ◦ Σ7p] = −[ι8, 3ν8 ◦ Σ7p].

So we conclude that map(Σ7CP 2, S8; ∗), map(Σ7CP 2, S8; 2ν8 ◦ Σ7p) and
map(Σ7CP 2, S8; ν8 ◦ Σ7p) 'f map(Σ7CP 2, S8; 3ν8 ◦ Σ7p) have different fibre
homotopy types each others by Theorem 6. Also we have that

[ι8, α1(8) ◦ Σ7p] = [ι8, α1(8)] ◦ Σ(ι7 ∧ Σ6p)

has order 3 by Proposition 5. By biadditivity of generalized Whitehead product
we have

[ι8, 2α1(8) ◦ Σ7p] = [ι8,−α1(8) ◦ Σ7p] = −[ι8, α1(8) ◦ Σ7p].

By Theorem 6 we have map(Σ7CP 2, S8;α1(8) ◦ Σ7p) and map(Σ7CP 2, S8;
−α1(8) ◦ Σ7p) have same fibre homotopy type.

(8) We have

[ι9, ν9 ◦ Σ8p] = [ι9, ν9] ◦ Σ(ι8 ∧ Σ7p) = ν9 ◦ ν17 ◦ Σ16p 6= 0

by [3, (2.10)] and Proposition 10. Since ν9 ◦ ν17 ◦ Σ16p has order 2, we have
[ι9, 2ν9 ◦ Σ8p] = 0 = [ι9, ∗]. By biadditivity of generalized Whitehead product
we have

[ι9, 3ν9 ◦ Σ8p] = [ι9,−ν9 ◦ Σ8p] = −[ι9, ν9 ◦ Σ8p].
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Also we have

[ι9, α1(9) ◦ Σ8p] = [ι9, α1(9)] ◦ Σ(ι8 ∧ Σ7p) = 0

since α1(9) ∈ G12(S9). By Theorem 6 we have map(Σ8CP 2, S9; f) has same
fibre homotopy type for [f ] ∈

〈
2ν9 ◦ Σ8p, α1(9) ◦ Σ8p

〉
and map(Σ8CP 2, S9; ν9◦

Σ8p) 'f map(Σ8CP 2, S9; 3ν9 ◦ Σ8p). �

Corollary 1. (1) G1(CP 2, S2) = Z{η2 ◦ 2ι3}.
(2) G2(CP 2, S3) = Z2{ν′ ◦ Σ2p} ⊕ Z3{α1(3) ◦ Σ2p}.
(3) G3(CP 2, S4) = Z{2ν4 ◦ Σ3p} ⊕ Z2{Σν′ ◦ Σ3p}.
(4) For n = 4, 5, 6, Gn(CP 2, Sn+1) ∼= Z4{νn+1 ◦Σnp}⊕Z3{α1(n+1)◦Σnp}.
(5) G7(CP 2, S8) = 0.
(6) G8(CP 2, S9) = Z2{2ν9 ◦ Σ8p} ⊕ Z3{α1(9) ◦ Σ8p}.

We recall a long exact sequence [12, Theorem 2.7]:

Theorem 9. There is a long exact sequence

· · · → [ΣrA,map(ΣB,X; f)]
w∗−−→ [ΣrA,X]

Pα−−→ [Σ(Σr−1A ∧B), X]
i′∗−→ [Σr−1A,map(ΣB,X; f)]→ · · · ,

where α = [f ] ∈ [ΣB,X] and Pα(β) = [β, α] is the generalized Whitehead
product and w : map(ΣB,X; f)→ B is the evaluation map.

Corollary 2. i′∗ : [Σr+mCP 2, Sn] → πr(map(Σ
mCP 2, Sn; f)) is an isomor-

phism for r ≤ n− 2 and m ≥ 1.

Theorem 10. (1) π1(map(ΣCP 2, S2; f)) ∼= Z2{η2 ◦ν′ ◦Σ2p}⊕Z3{[ι2, ι2]◦
α1(3)} for all f : ΣCP 2 → S2.

(2) π2(map(Σ2CP 2, S3; f)) ∼= Z2{ν′◦2ι6}⊕Z3{α1(3)} for all f : Σ2CP 2 →
S3.

(3) (a) For [f ] ∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
,

π3(map(Σ3CP 2, S4; f))

∼= Z4{ν2
4 ◦ Σ6p} ⊕ Z2

3{α1(4) ◦ α1(7) ◦ Σ6p, [ι4, ι4] ◦ α1(7) ◦ Σ6p}.

(b) For [f ]∈{(2n+ 1)ν4 ◦Σ3p |n ∈ Z} and [g]∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
,

π3(map(Σ3CP 2, S4; f + g))

∼= Z2{ν2
4 ◦ Σ6p} ⊕ Z2

3{α1(4) ◦ α1(7) ◦ Σ6p, [ι4, ι4] ◦ α1(7) ◦ Σ6p}.

(c) For [f ]∈{α1(4)◦Σ3p, 3α1(4)◦Σ3p} and [g]∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
,

π3(map(Σ3CP 2, S4; f + g)) ∼= Z4{ν2
4 ◦ Σ6p} ⊕ Z3{α1(4) ◦ α1(7) ◦ Σ6p}.

(4) π4(map(Σ4CP 2, S5; f)) ∼= Z4{ν5 ◦ η2
8} ⊕ Z3{α2(5) ◦ Σ8p}

⊕ Z5{α1,5(5) ◦ Σ8p}
for all f : Σ4CP 2 → S5.
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(5) (a) For [f ] ∈
〈
2ν6 ◦ Σ5p

〉
,

π5(map(Σ5CP 2, S6; f))

∼= Z2
4{ν6 ◦ g9, ν6 ◦ Σ10p} ⊕ Z3{[ι6, ι6] ◦ α1(11) ◦ Σ10p}.

(b) For [f ] ∈ {ν6 ◦ Σ5p, 3ν6 ◦ Σ5p} and [g] ∈
〈
2ν6 ◦ Σ5p

〉
,

π5(map(Σ5CP 2, S6; f))

∼= Z4{ν6 ◦ g9} ⊕ Z2{ν6 ◦ Σ10p} ⊕ Z3{[ι6, ι6] ◦ α1(11) ◦ Σ10p}.

(c) For [f ] ∈ {α1(6) ◦ Σ5p, 2α1(6) ◦ Σ5p} and [g] ∈
〈
2ν6 ◦ Σ5p

〉
,

π5(map(Σ5CP 2, S6; f)) ∼= Z2
4{ν6 ◦ g9, ν6 ◦ Σ10p}.

(6) π6(map(Σ6CP 2, S7; f)) ∼= Z8{σ′ ◦ 2ι14} ⊕ Z3{α2(7)} ⊕ Z5{α1,5(7)}
for all f : Σ6p→ S7.

(7) (a) π7(map(Σ7CP 2, S8; ∗))
∼= Z2

4{σ8 ◦ ν15 ◦ Σ14p, ν8 ◦ σ11 ◦ Σ14p}
⊕ Z2

3{β1(8) ◦ Σ14p, [ι8, ι8] ◦ α1(15) ◦ Σ14p}.
(b) For [f ] ∈ {ν8 ◦ Σ7p, 3ν8 ◦ Σ7p},

π7(map(Σ7CP 2, S8; f)) ∼= Z2{2σ8 ◦ ν15 ◦ Σ14p}.
(c) For [f ] = ν8 ◦ Σ7p,

π7(map(Σ7CP 2, S8; f))

∼= Z4{σ8 ◦ ν15 ◦ Σ14p} ⊕ Z2{ν8 ◦ σ11 ◦ Σ14p}
⊕ Z2

3{β1(8) ◦ Σ14p, [ι8, ι8] ◦ α1(15) ◦ Σ14p},

(d) For [f ] ∈ {α1(9) ◦ Σ7p, 2α1(9) ◦ Σ7p},
π7(map(Σ7CP 2, S8; f))

∼= Z2
4{σ8 ◦ ν15 ◦ Σ14p, ν8 ◦ σ11 ◦ Σ14p} ⊕ Z3{β1(8) ◦ Σ14p}.

(8) (a) For [f ] ∈
〈
α1(9) ◦ Σ8p, 2ν9 ◦ Σ8p

〉
,

π8(map(Σ8CP 2, S9; f))

∼= Z8{ν2
9 ◦ g15} ⊕ Z2

2{ν9 ◦ ν17 ◦ Σ16p, η9 ◦ ε10}
⊕ Z7{α1,7(9) ◦ Σ14p} ⊕ Z9{α′3(9) ◦ Σ14p}.

(b) For [f ] ∈ {ν9 ◦ Σ8p, 3ν9 ◦ Σ8p} and [g] ∈
〈
α1(9) ◦ Σ8p, 2ν9 ◦ Σ8p

〉
,

π8(map(Σ8CP 2, S9; f + g))

∼= Z8{ν2
9 ◦ g15} ⊕ Z2{η9 ◦ ε10} ⊕ Z7{α1,7(9) ◦ Σ14p} ⊕ Z9{α′3(9) ◦ Σ14p}.

Proof. (1) We apply A = S0, B = CP 2, X = S2 and r = 2 to Theorem 9. Let
f : ΣCP 2 → S2 be any map and let α = [f ]. Then we have an exact sequence

π2(S2)
Pα−−→ [Σ2CP 2, S2]

i′∗−→ π1(map(ΣCP 2, S2; f))→ 0.
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By Theorem 8 we have Pα is trivial, so that

i′∗ : [Σ2CP 2, S2]→ π1(map(ΣCP 2, S2; f))

is an isomorphism. By Proposition 3.2 of [8] this proof is complete.
(2) We apply A = S0, B = ΣCP 2, X = S3 and r = 3 to Theorem 9. Let

f : Σ2CP 2 → S3 be any map and let α = [f ]. Then we have an exact sequence

π3(S3)
Pα−−→ [Σ4CP 2, S3]

i′∗−→ π2(map(Σ2CP 2, S3; f))→ 0.

Since S3 is an H-space, we have Pα is trivial. Thus we have i′∗ : [Σ2CP 2, S2]→
π1(map(ΣCP 2, S2; f)) is an isomorphism. By Proposition 3.3 of [8] this proof
is complete.

(3) We apply A = S0, B = Σ2CP 2, X = S4 and r = 4 to Theorem 9. Then
we have an exact sequence

π4(S4)
Pα−−→ [Σ6CP 2, S4]

i′∗−→ π3(map(Σ3CP 2, S4; f))→ 0.

First we consider α = [f ] ∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
. By Theorem 8 Pα is trivial.

Then we have i∗ : [Σ6CP 2, S4] → π3(map(ΣCP 3, S4; f)) is an isomorphism.
By Proposition 3.4 of [8] we have (a). Second we consider that α = [f ] ∈
{(2n+ 1)ν4 ◦ Σ3p |n ∈ Z}. By Theorem 8 we have

CokerPα = Z2{ν2
4 ◦ Σ6p} ⊕ Z2

3{α1(4) ◦ α1(7) ◦ Σ3p, [ι4, ι4] ◦ α1(7) ◦ Σ3p}.
Since i′∗ : CokerPα → π3(map(ΣCP 3, S4; f)) is an isomorphism, we have (b) by
Proposition 3.4 of [8]. Finally we consider α = [f ] ∈ {α1(4)◦Σ3p, 3α1(4)◦Σ3p}.
By Theorem 8 we have

CokerPα = Z4{ν2
4 ◦ Σ6p} ⊕ Z3{α1(4) ◦ α1(7) ◦ Σ3p}.

Since i′∗ : CokerPα → π3(map(ΣCP 3, S4; f)) is an isomorphism, we have (c)
by Proposition 3.4 of [8].

(4) We apply A = S0, B = Σ3CP 2, X = S5 and r = 5 to Theorem 9. Let
f : Σ4CP 2 → S5 be any map and let α = [f ]. Then we have an exact sequence

π5(S5)
Pα−−→ [Σ8CP 2, S5]

i′∗−→ π4(map(Σ4CP 2, S5; f))→ 0.

By Theorem 8 we have Pα is trivial. Thus we have i′∗ : [Σ8CP 2, S5] →
π4(map(Σ4CP 2, S5; f)) is an isomorphism. By Proposition 3.5 of [8] this proof
is complete.

(5) We apply A = S0, B = Σ5CP 2, X = S6 and r = 6 to Theorem 9. Then
we have an exact sequence

π6(S6)
Pα−−→ [Σ10CP 2, S6]

i′∗−→ π5(map(Σ5CP 2, S6; f))→ 0.

First we consider α = [f ] ∈
〈
2ν6 ◦ Σ5p

〉
. By Theorem 8 we have Pα is trivial.

Thus we have i′∗ : [Σ10CP 2, S6] → π5(map(Σ5CP 2, S6; f)) is an isomorphism.
By Proposition 3.6 of [8], we have (a). Second we consider α = [f ] ∈ {ν6 ◦
Σ5p, 3ν5 ◦ Σ5p}. By Theorem 8 we have

CokerPα = Z4{ν6 ◦ g9} ⊕ Z2{ν6 ◦ Σ10} ⊕ Z3{[ι6, ι6] ◦ α1(11) ◦ Σ10p}.
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By the isomorphism i′∗ : CokerPα → π5(map(Σ5CP 2, S6; f)) we have (b). Fi-
nally we consider α = [f ] ∈ {α1(6) ◦ Σ5p, 2α2(6) ◦ Σ5p}. By Theorem 8 we
have

CokerPα = Z2
4{ν6 ◦ g9, ν6 ◦ Σ10}.

By the isomorphism i′∗ : CokerPα → π5(map(Σ5CP 2, S6; f)) we have (c).
(6) We apply A = S0, B = Σ6CP 2, X = S7 and r = 7 to Theorem 9. Let

f : Σ6CP 2 → S7 be any map and let α = [f ]. Then we have an exact sequence

π7(S7)
Pα−−→ [Σ12CP 2, S7]

i′∗−→ π6(map(Σ6CP 2, S7; f))→ 0.

Since S7 is an H-space, we have Pα is trivial. Thus we have i′∗ : [Σ12CP 2, S7]→
π6(map(Σ6CP 2, S7; f)) is an isomorphism. By Proposition 3.7 of [8] this proof
is complete.

(7) We apply A = S0, B = Σ6CP 2, X = S7 and r = 7 to Theorem 9. Then
we have an exact sequence

π8(S8)
Pα−−→ [Σ14CP 2, S8]

i′∗−→ π7(map(Σ7CP 2, S8; f))→ 0.

First we consider that f = ∗ and α = [f ]. Then we have Pα is trivial. Thus
we i′∗ : [Σ14CP 2, S8]→ π7(map(Σ7CP 2, S8; f)) is an isomorphism. Second we
consider that α = [f ] ∈ {ν8 ◦ Σ7p, 3ν8 ◦ Σ7p}. Then we have

CokerPα = Z2{2σ8 ◦ ν15 ◦ Σ14p} ⊕ Z2
3,

where 2σ8 ◦ ν15 ◦ Σ14p = xν8 ◦ σ11Σ14p for some odd x. By isomorphism
i′∗ : CokerPα → π7(map(Σ7CP 2, S8; f)) we have (b). Third we consider that
α = [f ] = 2ν8 ◦ Σ7p. By Theorem 8 we have

CokerPα = Z4{σ8 ◦ ν15 ◦ Σ14p} ⊕ Z2{ν8 ◦ σ11 ◦ Σ14} ⊕ Z2
3.

By isomorphism i′∗ : CokerPα → π7(map(Σ7CP 2, S8; f)) we have (c). Finally
we consider that α = [f ] ∈ {α1(9) ◦Σ7p, 2α1(9) ◦Σ7p}. By Theorem 8 we have

CokerPα = Z2
4{σ8 ◦ ν15 ◦ Σ14p, ν8 ◦ σ11 ◦ Σ14} ⊕ Z3{β1(8) ◦ Σ14p}.

By isomorphism i′∗ : CokerPα → π7(map(Σ7CP 2, S8; f)) we have (d).
(8) We apply A = S0, B = Σ7CP 2, X = S8 and r = 8 to Theorem 9. Then

we have an exact sequence

π9(S9)
Pα−−→ [Σ16CP 2, S9]

i′∗−→ π8(map(Σ8CP 2, S9; f))→ 0.

First we consider α = [f ] ∈
〈
ν9 ◦ Σ9p, 3ν9 ◦ Σ9p

〉
. By Theorem 8 we have

Pα is trivial. By Theorem 9 we have (a). Finally we consider α = [f ] ∈
{ν9 ◦ Σ8p, 3ν9 ◦ Σ8}. By Theorem 8 we have

CokerPα = Z8{(Eσ′) ◦ η2
15 + η8 ◦ ε9} ⊕ Z2{ν2

9 ◦ ν15}
⊕ Z7{α1,7(9) ◦ Σ14p} ⊕ Z9{α′3(9) ◦ Σ14p}.

By an isomorphism i′∗ : CokerPα → π8(map(Σ8CP 2, S9; f)) we have (B). �
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Corollary 3. (1) For [f ], [g] ∈ [ΣCP 2, S2], map(ΣCP 2, S2; f) is homo-
topy equivalent to map(ΣCP 2, S2; g).

(2) For [f ], [g] ∈ [Σ2CP 2, S3], map(Σ2CP 2, S3; f) is homotopy equivalent
to map(Σ2CP 2, S3; g).

(3) For [f ] ∈
〈
2ν4 ◦ Σ3p,Σν′ ◦ Σ3p

〉
, [g] ∈ {(2n + 1)ν4 ◦ Σ3p |n ∈ Z} and

[h] ∈ {α1(4)◦Σ3p, 3α1(4)◦Σ3p}, four path-components mapf , mapf+g,
maph+f and mapg+h have different homotopy types each other.

(4) For [f ], [g] ∈ [Σ4CP 2, S5], map(Σ4CP 2, S5; f) is homotopy equivalent
to map(Σ4CP 2, S5; g).

(5) For [f ] ∈
〈
2ν6 ◦ Σ5p

〉
, [g] ∈ {ν6 ◦ Σ5p, 3ν6 ◦ Σ5p} and [h] ∈ {α1(6) ◦

Σ5p, 2α1(6)◦Σ5p}, four path-components mapf , mapf+g, maph+f and
mapg+h have different homotopy types each other.

(6) For [f ], [g] ∈ [Σ6CP 2, S7], map(Σ6CP 2, S7; f) is homotopy equivalent
to map(Σ6CP 2, S7; g).

(7) For [f ] = ν8 ◦ Σ7p and [g] = α1(8) ◦ Σ7p, six path-components map∗,
mapf , map2f , mapg, mapf+g and map2f+g have different homotopy
types each other.

(8) For [g] ∈ {ν9 ◦ Σ8p, 3ν9 ◦ Σ8p} and [f ] ∈
〈
α1(9) ◦ Σ8p, 2ν9 ◦ Σ8p

〉
, two

path-components mapf and mapf+g have different homotopy types.
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