Browse > Article
http://dx.doi.org/10.4134/JKMS.j200249

HOMOTOPY PROPERTIES OF map(ΣnℂP2, Sm)  

Lee, Jin-ho (Data Science, Pulse9. Inc.)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.3, 2021 , pp. 761-790 More about this Journal
Abstract
For given spaces X and Y, let map(X, Y) and map*(X, Y) be the unbased and based mapping spaces from X to Y, equipped with compact-open topology respectively. Then let map(X, Y ; f) and map*(X, Y ; g) be the path component of map(X, Y) containing f and map*(X, Y) containing g, respectively. In this paper, we compute cohomotopy groups of suspended complex plane πn+mnℂP2) for m = 6, 7. Using these results, we classify path components of the spaces map(ΣnℂP2, Sm) up to homotopy equivalence. We also determine the generalized Gottlieb groups Gn(ℂP2, Sm). Finally, we compute homotopy groups of mapping spaces map(ΣnℂP2, Sm; f) for all generators [f] of [ΣnℂP2, Sm], and Gottlieb groups of mapping components containing constant map map(ΣnℂP2, Sm; *).
Keywords
Composition methods; homotopy groups of mapping spaces; cohomotopy groups; Gottlieb groups; evaluation fibrations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999.
2 H. Kachi, J. Mukai, T. Nozaki, Y. Sumita, and D. Tamaki, Some cohomotopy groups of suspended projective planes, Math. J. Okayama Univ. 43 (2001), 105-121.
3 V. L. Hansen, Equivalence of evaluation fibrations, Invent. Math. 23 (1974), 163-171. https://doi.org/10.1007/BF01405168   DOI
4 D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. https://doi.org/10.2307/2373349   DOI
5 G. W. Whitehead, On products in homotopy groups, Ann. of Math (2) 47 (1946), 460-475. https://doi.org/10.2307/1969085   DOI
6 J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. https://doi.org/10.2307/1993204   DOI
7 K. Oguchi, Generators of 2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1964), 65-111 (1964).
8 M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23. http://projecteuclid.org/euclid.pjm/1103036701   DOI
9 J.-B. Gatsinzi, Rational Gottlieb group of function spaces of maps into an even sphere, Int. J. Algebra 6 (2012), no. 9-12, 427-432.
10 M. Golasinski and J. Mukai, Gottlieb groups of spheres, Topology 47 (2008), no. 6, 399-430. https://doi.org/10.1016/j.top.2007.11.001   DOI
11 B. Gray, Homotopy Theory, Academic Press, New York, 1975.
12 D. Harris, Every space is a path component space, Pacific J. Math. 91 (1980), no. 1, 95-104. http://projecteuclid.org/euclid.pjm/1102778858   DOI
13 P. J. Kahn, Some function spaces of CW type, Proc. Amer. Math. Soc. 90 (1984), no. 4, 599-607. https://doi.org/10.2307/2045037   DOI
14 G. Lupton and S. B. Smith, Criteria for components of a function space to be homotopy equivalent, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 95-106. https://doi.org/10.1017/S0305004108001175   DOI
15 G. E. Lang, Jr., The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), 201-210. http://projecteuclid.org/euclid.pjm/1102948664   DOI
16 K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. (N.S.) 33 (1969), 141-164 (1970).
17 K. Maruyama and H. Oshima, Homotopy groups of the spaces of self-maps of Lie groups, J. Math. Soc. Japan 60 (2008), no. 3, 767-792. http://projecteuclid.org/euclid.jmsj/1217884492   DOI
18 C. A. McGibbon, Self-maps of projective spaces, Trans. Amer. Math. Soc. 271 (1982), no. 1, 325-346. https://doi.org/10.2307/1998769   DOI
19 J. Mukai, Note on existence of the unstable Adams map, Kyushu J. Math. 49 (1995), no. 2, 271-279. https://doi.org/10.2206/kyushujm.49.271   DOI
20 H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, NJ, 1962.
21 G. Lupton and S. B. Smith, Gottlieb groups of function spaces, Math. Proc. Cambridge Philos. Soc. 159 (2015), no. 1, 61-77. https://doi.org/10.1017/S0305004115000201   DOI