• Title/Summary/Keyword: compact embedding

Search Result 25, Processing Time 0.023 seconds

A Study on the Compact Regenerative Burner Development (compact 축열 버너 개발 연구)

  • Dong, Sang-Keun;Lee, Eun-Kyoung;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.248-255
    • /
    • 2004
  • For the compactness of regenerative combustion, self regenerative combustion and embedding regenerator inside furnace are proposed. The Self Regenerative burner system was developed to enhance thermal efficiency and Low Nox emission. In the twin regenerative system, two burner heads are generally used for preheating and exhausting combustion mode. But self regenerative burner system use only single nozzle body for regenerative combustion. Also two kind of regenerator, internal and external type, were designed to operate conveniently in both large and small furnace. According to test result, the self regenerative combustion system gives strong internal exhaust gas recirculation that reduce NOx emission significantly. NOx was measured as 50ppm(5% O2, 1290C furnace temperature). Also it is found that the fuel saving rate due to the self regenerative burner system reach to 30-40%. Thus it can be concluded that self regenerative mild combustion system appears to provide a reasonable regenerative burner for compactness and high performance as compared with conventional twin regenerative burner system. Also in the RT Application , compact twin regenerative burner was developed with the help of embedding regenerator inside furnace.

  • PDF

Chip Impedance Evaluation Method for UHF RFID Transponder ICs over Absorbed Input Power

  • Yang, Jeen-Mo;Yeo, Jun-Ho
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.969-971
    • /
    • 2010
  • Based on a de-embedding technique, a new method is proposed which is capable of evaluating chip impedance behavior over absorbed power in flip-chip bonded UHF radio frequency identification transponder ICs. For the de-embedding, four compact co-planar test fixtures, an equivalent circuit for the fixtures, and a parameter extraction procedure for the circuit are developed. The fixtures are designed such that the chip can absorb as much power as possible from a power source without radiating appreciable power. Experimental results show that the proposed modeling method is accurate and produces reliable chip impedance values related with absorbed power.

APPROXIMATE CONTROLLABILITY FOR QUASI-AUTONOMOUS DIFFERENTIAL EQUATIONS

  • JEONG JIN MUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.623-631
    • /
    • 2005
  • The approximate controllability for the nonlinear control system with nonlinear monotone hemicontinuous and coercive operator is studied. The existence, uniqueness and a variation of solutions of the system are also given.

A Compact LTCC Dual-Band WLAN Filter using Two Notch Resonators

  • Park, Jun-Hwan;Cheon, Seong-Jong;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.168-175
    • /
    • 2013
  • This paper presents compact dual-band WLAN filter and filter module. They were developed by embedding all of the passive lumped elements into a LTCC substrate. In order to reduce the size/volume of the filter and avoid EM parasitic couplings between the passive elements, the proposed filter was designed using a 3rd order Chebyshev circuit topology and J-inverter transformation technology. The 3rd order Chebyshev bandpass filter was firstly designed for the band-selection of the 802.11b and was then transformed using finite transmission zeros technologies. Finally, the dual-band filter was realized by adding two notch resonators to the 802.11b filter circuit for the band-selection of the 802.11a/g. The maximum insertion losses in the lower and higher passbands were better than 2.0 and 1.3 dB with minimum return losses of 15 and 14 dB, respectively. Furthermore, the filter was integrated with a diplexer to clearly split the signals between 2 and 5 GHz. The maximum insertion and minimum return losses of the fabricated module were 2.2 and 14 dB at 2.4 - 2.5 GHz, and 1.6 and 19 dB at 5.15 - 5.85 GHz, respectively. The overall volume of the fabricated filter was $2.7{\times}2.3{\times}0.59mm^3$.

Short-term load forecasting using compact neural networks (최소 구조 신경회로망을 이용한 단기 전력 수요 예측)

  • Ha, Seong-Kwan;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.91-93
    • /
    • 2004
  • Load forecasting is essential in order to supply electrical energy stably and economically in power systems. ANNs have flexibility to predict a nonlinear feature of load profiles. In this paper, we selected just the necessary input variables used in the paper(2) which is based on the phase-space embedding of a load time-series and reviewing others. So only 5 input variables were selected to forecast for spring, fall and winter season and another input considering temperature sensitivity is added during the summer season. The training cases are also selected from all previous data composed training cases of a 7-day, 14-day and 30-day period. Finally, we selected the training case of a 7-day period because it can be used in STLF without sacrificing the accuracy of the forecast. This allows more compact ANNs, smaller training cases. Consequently, test results show that compact neural networks can be forecasted without sacrificing the accuracy.

  • PDF

THE EXISTENCE OF SEMIALGEBRAIC SLICES AND ITS APPLICATIONS

  • Choi, Myung-Jun;Park, Dae-Heui;Suh, Dong-Youp
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.629-646
    • /
    • 2004
  • Let G be a compact semialgebraic group and M a semi-algebraic G-set. We prove that there exists a semialgebraic slice at every point of M. Moreover M can be covered by finitely many semialgebraic G-tubes. As an application we give a different proof that every semialgebraic G-set admits a semi algebraic G-embedding into some semialgebraic orthogonal representation space of G, which has been proved in [15].

Word Sense Disambiguation Using Embedded Word Space

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • Determining the correct word sense among ambiguous senses is essential for semantic analysis. One of the models for word sense disambiguation is the word space model which is very simple in the structure and effective. However, when the context word vectors in the word space model are merged into sense vectors in a sense inventory, they become typically very large but still suffer from the lexical scarcity. In this paper, we propose a word sense disambiguation method using word embedding that makes the sense inventory vectors compact and efficient due to its additive compositionality. Results of experiments with a Korean sense-tagged corpus show that our method is very effective.