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Abstract
Determining the correct word sense among ambiguous senses is essential for semantic analysis. One of the models for

word sense disambiguation is the word space model which is very simple in the structure and effective. However, when

the context word vectors in the word space model are merged into sense vectors in a sense inventory, they become typi-

cally very large but still suffer from the lexical scarcity. In this paper, we propose a word sense disambiguation method

using word embedding that makes the sense inventory vectors compact and efficient due to its additive compositionality.

Results of experiments with a Korean sense-tagged corpus show that our method is very effective.
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I. INTRODUCTION

Determining the correct meaning of a word, especially

a homograph, is very important for the performance of

natural language processing systems, such as information

retrieval systems, machine translation systems, question

answering systems, and others. The meaning of a homo-

graph is often determined by its contextual words. For

example, ‘bank’ means both a monetary institute and a

slope of land bordering a river. Based on the contexts of

the following sentences, the respective meanings of the

word can be readily identified:

I go to the bank to deposit money.

I walk along the bank of the river. 

In most word sense disambiguation (WSD) systems,

the neighboring words and part-of-speech tags are used

as clues and are represented as elements in a vector [1]. A

word vector to be disambiguated is typically called a

‘context vector,’ while the target sense in an inventory is

the ‘sense vector.’ In other words, WSD is the task of

finding the most similar sense vector in a word sense

inventory for a given context vector.

WSD is performed in knowledge-based, supervised, and

unsupervised approaches [2]. Knowledge-based approaches

use for sense vectors lexical resources, such as dictionar-

ies and thesauruses [3-5]. However, knowledge-based

approaches suffer from a data sparseness problem mainly

because the knowledge sources, such as dictionaries and

thesauruses, do not provide enough lexical entries for

matching with a context vector. 

Supervised approaches use a sense-tagged corpus for
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training the systems. They are predominantly based on

machine learning methods. The sense vectors are directly

gathered from the corpus and are represented in vector

space [6-8]. Supervised approaches provide more lexical

information from the training corpus; however, the cor-

pus is expensive and is limited to small size.

Unsupervised approaches use a raw corpus and induce

senses from the corpus for labeling senses [9]. Unsuper-

vised approaches partially solve the cost problem of

the supervised approaches by automatically tagging the

ambiguous words with ‘derived senses’ from the raw cor-

pus itself.

As more corpus and language resources are utilized for

context representation, the sizes of sense vectors grow

rapidly, which demands a size reduction and effective

representation of vectors. Dimension reduction is useful

not only for size reduction of a sense vector inventory,

but also for mitigating the data sparseness problem.

In this paper, we propose a method for word sense dis-

ambiguation that represents context and sense vectors

with ‘word vectors’ produced by a deep neural net pro-

gram, Word2Vec (W2V) [10]. We use a sense-tagged cor-

pus to create sense vectors and then reduce the dimension

of vectors by using a continuous bag of word (CBOW)

architecture in W2V. Our proposed model is “an embedded

word space model” which expands the previous researches

of word space model [9, 11, 12] to incorporate embedded

word vectors. In this model, all the word types are repre-

sented in the same word space and WSD is done by sim-

ple calculation of vector similarity between homographs.

In Section II, we briefly review the related works. In

Section III, we overview the word space model and its

modified model. Our proposed method is described in

Section IV, and its model features and combinations are

presented in Section V. Results of experiments conducted

with a Korean sense-tagged corpus are provided in Sec-

tion VI, and our conclusions are discussed in Section VII.

II. RELATED WORKS

Schutze [9] used singular value decomposition (SVD)

for reducing the dimension of context vectors and obtain-

ing more effective sense induction from the unlabeled

corpus. Gliozoo et al. [13] used the latent semantic analy-

sis (LSA) method to induce from unlabeled corpus a

domain matrix that maps external terms to the terms in

the supervised learning process. This process enables the

WSD system to process the terms in different domains.

Cai et al. [14] and Li et al. [15] constructed a topic model

using latent Dirichlet allocation (LDA) to mitigate the

data scarcity problem by mapping words to topics in a

sense selection process.

Using a deep neural net is known to be more effective

for semantic relation testing than principal component

analysis or LSA and is computationally less expensive

than LDA [16, 17]. Recently word embedding is used for

WSD with various word weights [18] where word vectors

are used for part of features of support vector machine

(SVM) learning. It showed that using word vector fea-

tures is effective for the WSD. However, the multiclass

SVM needs to be trained for each word type, which pro-

duces as many models as the number of word types. 

III. WORD SPACE MODEL

The word space model used for WSD [9] is an applica-

tion of the vector space model used in information

retrieval [19]. In the model, all words are represented in

vectors, and the similarity between words is measured

with a vector distance. A sense vector is represented with

context words, wj, appearing around word sense si, as

shown in Eq. (1), where V is the size of the vocabulary,

and f(wj) is the weight function of word wj.

(1)

Additionally, a context vector of a query word, qw, is

represented in the same way.

(2)

WSD finds the most similar word sense vector among

the word vectors in the sense inventory belonging to the

surface form of qw.

sense(qw) =  (3)

Previous studies show that using prior probability is

effective [11, 20]. The Bayesian method used in [20] can

be modified to use prior probability and cosine similarity

by replacing conditional probability with the cosine simi-

larity plus one to have positive values [12]. The method

is represented in Eq. (4). In this paper, we further derive

the equation to use the adjusting factor alpha to be bal-

anced with prior probability as shown in Eq. (5). Because

the argmax operator does not need normalization of argu-

ments, powering the first argument with positive integer

values of alpha is valid.

= 

(4)

(5)

IV. EMBEDDED WORD SPACE MODEL

The W2V program produces ‘induced word vectors’ by

vec si( ) f w1( ), f w2( ),...f wV( )( )=

vec qw( ) f qw1( ), f qw2( ),...f qwV( )( )=

argmax
k

sim vec qw( ), vec sk( )( )

argmax
k

pr sk qw( )

argmax
k

pr qw sk( ) prprior sk( )⋅

 ≈ argmax
k

1 vec qw( ), vec sk( )( )cos+( ) prprior sk( )⋅

 ≈ argmax
k

1 vec qw( ), vec sk( )( )cos+( )
α

prprior sk( )⋅
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learning word sequences. The induced word vectors have

compositionality, which makes a vector addition possible.

For example, vec(‘king’) – vec(‘man’) + vec(‘woman’) =

vec(‘queen’) [16]. Assuming that the vector operation is

valid for the semantic calculation, we use the induced

word vectors for the dimension reduction. 

First, each word sense is represented with context

words by the same method as the word space model.

Then, the W2V program is trained with word sequences

(these are not word sense sequences). The resulting vec-

tors are used for the addition of each corresponding con-

text word to make the sense vectors compact. The

dimension of the induced word vector is typically much

smaller than the vocabulary size, and the addition results

in dimension reduction. This process is shown in Eq. (6).

The weight is multiplied for each word vector of context

word wj to reflect the importance of the specific word.

(6)

The query word vector can be represented in the same

way by using the query context words, qwj, and by adding

their corresponding induced vectors to make a compact

vector:

(7)

If a word appears less than a threshold, the word is

usually replaced with an unknown marker in W2V learn-

ing [10]. Therefore, some infrequent words in contexts

are replaced with unknown word vectors.

V. FEATURES AND COMBINED MODELS

We may have various combinations of the two base

models with various parameters. For parameters, we con-

sider the word weight function, default sense selection,

and context word selection basis as follows.

Word weight function: The weighted function can be

defined in various ways by combining the frequency,

word distance, chi-square, and inverse document fre-

quency (IDF). We chose Eq. (8), which showed the best

performance among the various combinations in prelimi-

nary testing. As the dimension of sense vectors is usually

very large, dimension reduction is thus performed in

choosing context words. First, we limit the context words

to content words (noun, verb, adjective). Second, we

select the high frequency words close to the target word

within a fixed window size (in this paper, five). In the

second case, two factors are multiplied, as shown in Eq.

(8), to be used for the word weight and dimension cut

(The word distance used in this paper is similar to the

fractional decay in [18], where exponential decay showed

better performance. However, we adopt our distance cal-

culation formula shown in (8) for the comparison with

previous works [11, 20]).

(8)

Default sense: In all models, the sizes of the inventory

words are not large enough to cover all the context

words. When none of the sense vector candidates match

with a context vector, we select the most frequent sense

(MFS) as a default sense to alleviate the data sparseness

problem.

Local and global word selection: The context word

frequency can be measured either locally for each homo-

graph basis or globally for all the homograph bases. In

local selection, each homograph has different vector

space, while in global selection, each homograph has the

same vector space. Consequently, local selection is

implemented with a more complex data structure.

Combining all the features with a word space model

(WS) and an embedded word space model (WE), we

choose four major models as follows:

1. Local WS: local word selection, using frequency *

distance weight function, WS model with default

MFS.

2. Global WS: global word selection, using frequency

* distance weight function, WS model with default

MFS.

3. Global WE: global word selection, using frequency

* distance weight function, WE model with default

MFS.

4. MFS: baseline model using MFS only. This is equal

to the model that uses only prior probability by set-

ting alpha to zero in Eq. (5). 

Note that the local WE model is meaningless because

WE globally functions.

VI. EXPERIMENT

A. Experimental Setup

We used the Korean Sejong sense-tagged corpus [21]

for our experiments in which the homographs were

tagged with sense number labels. Table 1 shows the char-

acteristics of the corpus.

Approximately 8% of homographs were missing labels

in the corpus. We thus ignored them in the evaluation.

Both the window size of the W2V training and that of the

context vectors were five. In addition, the input words

were limited to the content words: nouns, verbs, and

vec si( ) w2v wj( )f wj( )
j

∑=

vec qw( ) w2v qwj( )f qwj( )
j

∑=

f wj( ) freq wjk( )distw wjk( )
k

∑=

distw w( ) WindSize OffsetFromSi w( ) 1+–=



Word Sense Disambiguation Using Embedded Word Space

Myung Yun Kang et al. 35 http://jcse.kiise.org

adjectives. We tested the CBOW W2V architecture with

a few parameter settings and chose the best one. The

selected option for the architecture was negative sam-

pling with 15 words. We additionally used a minimal fre-

quency cut of five and handled unknown words. 

We ran 10-fold cross-validation tests with 25, 50, 100,

200, 300, 400, and 500 respective dimensions, combined

with alpha values ranging from one to ten. We chose the

best performance in all tested dimensions and variable

values of alpha for each of the three models: local WS,

global WS, and global WE (CBOW).

We use two measures, macro average precision and

micro average precision (In this experiment, precision is

the same as recall because the test system produces one

output for each homograph in test data). Macro average is

calculated as the average of each homograph type’s aver-

age precision, while micro average is as the average pre-

cision of all homograph instances. Because micro

average is dominated by large category, macro average is

preferred for the quality measure of classification across

all categories, in this case, homograph types [22].

B. Results

Table 2 shows the precision of the baseline and the

three models in all tested dimensions when the alpha is

set to the best performing values: the value ranges from

six to eight in global WE, two in the local WS, and one in

the global WS. The baseline is the model of most fre-

quent sense selection method. Its performance is rela-

tively high, which is explained by the low average

number of senses per homograph, as shown in Table 1.

Table 1. Statistics of the Sejong sense-tagged corpus

No. of 

sentences

No. of 

word phrases

No. of 

sense-tagged words

No. of 

homograph types

Average no. of 

senses per homograph

832,650 9,524,183 3,892,113 17,078 1.6

Table 2. Best performances of the three proposed models and baseline model

Model
Dimension

25 50 100 200 300 400 500

Global WE 91.28

(95.58)

91.33

(96.01)

91.40

(96.02)

91.40

(96.03)

91.38

(96.03)

91.41

(96.03)

91.39

(96.04)

Local WS 89.62

(94.95)

90.02

(95.30)

90.38

(95.64)

90.67

(95.93)

90.76

(96.07)

90.81

(96.15)

90.84

(96.20)

Global WS 87.99

(94.08)

88.13

(94.23)

88.30

(94.43)

88.58

(94.69)

88.78

(94.87)

88.95

(95.01)

89.06

(95.12)

MFS 87.87

(94.03)

87.87

(94.03)

87.87

(94.03)

87.87

(94.03)

87.87

(94.03)

87.87

(94.03)

87.87

(94.03)

Macro (micro) average precision in %, 15 negative sampling, 5 min cut.

WE: embedded word space model; WS: word space model; MFS: most frequent sense.

Fig. 1. Micro average precision of the models in various
dimensions. WE: embedded word space model, WS: word space
model, MFS: most frequent sense.

Fig. 2. Macro average precision of the models in various
dimensions. WE: embedded word space model, WS: word space
model, MFS: most frequent sense.
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The micro average precision (represented within

parenthesis in Table 2) of all the models is higher than the

macro average, which means the data are skewed and the

frequent homographs are better in performance than

infrequent ones. In this measure, global WE is the highest

in the low dimension (from 25 to 200); however, it is the

second highest in the high dimension (from 300 to 500),

as shown in Table 2 and Fig. 1. Nevertheless, in the

macro average, the general performance of the global

WE is highest in all dimensions, as shown in Table 2 and

Fig. 2.

The adjusting factor, alpha, plays an important role in

improving the performance of global WE. The alpha

value adjusts the distribution difference of the similarity

of word vectors and the prior probability. For example,

without adjusting alpha, the incorrect sense (지면__03/

NNG) is selected, as shown in case 1 in Table 3. However,

with a properly adjusted alpha, the correct sense (지면__01/

NNG) is selected, as shown in case 2.

Table 4 shows the comparison with the results of other

Korean word sense disambiguation studies. The proposed

model is competitive, even though the testing environ-

ments are different. 

We selected our corresponding test result to the 4

homographs used in Lee et al. [23] as shown in Table 5.

The average performance of those words is slightly lower

than Lee et al.’s result. We conjecture two reasons for the

lower performance: (1) our test set has more senses per

homograph (average 4.5 vs. 4.0) and (2) our model is

optimized to much larger number of homographs (about

Table 4. Comparison with other Korean research results

Model Resources and method Testing data 
Precision (%)

(macro avg.)

Lee et al. [23] Sense tagged corpus, entropy 4 homographs 84.6

Kim et al. [20] Dictionary, co-occurrence 46 homographs 74.1

Heo et al. [24] Dictionary, raw corpus, sense tagged multi-words, mutual information About 200 homographs 88.8

Proposed Sense tagged corpus, embedded word space About 17,000 homographs 91.4

Table 5. Selective comparison with Lee et al.’s result

Homographs
Lee et al. [23] Our model

Precision (%) No. of senses Precision (%) No. of senses

배/NNG 82.20 4 72.19 9

전자/NNG 92.20 2 91.66 4

감다/VV 81.70 3 74.30 3

열리다 /VV 82.40 7 98.08 2

Average 84.63 4.0 84.06 4.5

Senses: 배/NNG (stomach, ship, pear, …), 전자/NNG (electron, former, ...), 감다/VV (close, wind, wash), 열리다/VV (open, bear fruit, …).

Table 3. Examples of balance factor adjusting for sense selection (answer is *지면__01/NNG and cosa = (cos(q,s)+1)α)

sense cosa prior cosa × prior

Case 1 

(without adjusting factor)

*지면__01/NNG 0.728 0.086 0.062

지면__02/NNG 0.496 0.005 0.003

지면__03/NNG 0.443 0.765 0.339

지면__04/NNG 0.429 0.144 0.062

Case 2 

(with adjusting factor alpha = 6)

*지면__01/NNG 0.148 0.086 0.013

지면__02/NNG 0.015 0.005 0.000

지면__03/NNG 0.008 0.765 0.006

지면__04/NNG 0.006 0.144 0.001

Test data: “백스윙이 톱에 이를 때 발바닥을 지면에 붙이면” (If you put your feet on the ground when you reach the top of the backswing). 

Senses: 지면__01 (ground), 지면__02 (acquaintance), 지면__03 (paper or in printed page), 지면__04 (in a magazine).
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17,000 vs. 4). Considering these facts, our model is still

competitive to the Lee et al.’s model.

Shin [25] proposed an integrated method for simulta-

neous morphological analysis (MA), part-of-speech (POS)

tagging, and WSD using a pre-analyzed word phrase dic-

tionary. In order to solve data sparseness problem in dic-

tionary-based approach, he used partial matching with

some heuristic rules and probabilistic approaches. He

estimated micro average precision of the WSD perfor-

mance by calculating the ratio of the number of word

phrases, which are tagged correctly with POS and senses,

to the two different denominators: (1) the number of all

word phrases including homographs and (2) the number

of word phrases including homographs and correctly ana-

lyzed MA/POS result. The first one is 95.8%, which may

be degraded by the propagation error from MA and POS

tagging stages, is lower than our best micro average

result of global WE model, 96.0%. The second one is

98.5%, which we conjecture could be exaggerated by

excluding error-prone word phrases such as low fre-

quency word phrases, is higher than our result (Note that

our test set includes all the word phrases that are manu-

ally POS tagged). Therefore, we cannot judge easily

which one is better, but we conjecture our method is com-

parable to Shin’s method, too.

In some cases, the distribution of senses is skewed and

sense similarity does not contribute to the performance

much. For example, a homograph, 전 /NNG, has 15 senses

in a training set and the sense 전_08/NNG (before) is

dominant by 98.8%. Therefore, it is very hard to discrim-

inate other senses from 전_08/NNG unless we set the

alpha to a very big number in Eq. (5). For further

improvement, it may be needed to set the different bal-

ancing factor, alpha, for each homograph depending on

the sense distribution.

As we focused on Korean word sense disambiguation

task, we tested our model only for Korean data set. As

our proposed method is language independent, we

believe that it can be applied to other languages, which is

left for future research.

VII. CONCLUSION

Word sense disambiguation systems use a considerable

amount of resources to include appropriate context infor-

mation. Moreover, the representation of the context vec-

tor is important for the system accuracy. In this paper, we

have proposed a method for word sense disambiguation

using word embedding, which makes the representation

of context word vectors compact and accurate for sense

selection. Moreover, the model is simple so that all the

word types can be disambiguated within one embedded

word space. The results of experiments with a Korean

sense-tagged corpus show that the proposed method

using word embedding is effective.
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