• Title/Summary/Keyword: cognitive cooperative network

Search Result 77, Processing Time 0.022 seconds

A Cooperative Spectrum Sensing and Dynamic Spectrum Decision Methods for Heterogeneous Cognitive Radio Network (이종 인지 라디오 네트워크에서 협력 스펙트럼 센싱 및 동적 스펙트럼 결정 방법)

  • Kim, Nam-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.560-568
    • /
    • 2012
  • Spectrum sensing and spectrum decision are the main functions that cognitive radios (CRs) have to perform in order to get the best available spectrum band for the establishment of a wireless communication. These problems are worsened in the presence of users with different demands and spectrum channels with different properties in a heterogeneous network. The primary objective in this work is to design and simulate a new spectrum decision algorithm for heterogeneous cognitive radio system. To this end, first, we consider all cognitive users are separated into different traffic classes according to their Quality of Service (QoS). The cognitive users within one traffic class perform spectrum sensing in centralized group-based cooperative spectrum sensing system and the users of different traffic classes share the sensing results. Second, we propose a novel use of the Analytic Hierarchy Process (AHP) to optimally select available bands according to user requirements and detected spectrum channel characteristics (SCC). In this paper, utility function is used as spectrum decision algorithm. Simulation results demonstrate that the proposed method shows can effectively select the best available spectrum channels with a low complexity.

Performance Analysis of Incremental relaying Method using Multiple Relays in the Cognitive Radio (인지통신에서 다수의 중계기를 이용한 증분형 중계 기법의 성능 분석)

  • Choi, Moon-Geun;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.61-66
    • /
    • 2011
  • Cooperative Communication using relays which include network separated into fixed cooperative relaying and incremental cooperative relaying defending on method receiving signal from a source. If some nodes included network is Primary user ad source and destination, another is Secondary user as relay, The nodes included network excepting source can help PU transmit signal. In the case of all of SU playing a role as relay, destination can get diversity gain, but useless time slot is consumed for transmitting signal. So in this paper, we analysis cooperative relaying which a node succeeding to sense primary signal send signal to destination. We use matlab simulation tool and consider AF, DF, fixed relaying, incremental relaying

An Algorithm to Reduce the Number of Nodes in Active Spectrum Sensing Via Cooperative Sequential Detection

  • Truc, Tran Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.148-154
    • /
    • 2012
  • In this paper, we propose an algorithm to conserve resources of the common control channel in a cognitive radio network by rejecting the redundant users using cooperative spectrum sensing. The proposed scheme is investigated under the paradigm of active spectrum sensing and a sequential detection technique. The algorithm is based on the J-divergence between the hypotheses of non primary user operation and the otherwise case. We select the most significant eigenvalues, which primarily affect the global statistical test. For the case where interference is from a secondary system transmission, a match filter is first employed to remove the degradation, and then the proposed algorithm is employed to remove the cooperative sensing nodes. Numerical results are provided and compared with conventional cases in order to validate the performance of the proposed algorithm.

Efficient Spectrum Sensing Based on Evolutionary Game Theory in Cognitive Radio Networks (인지무선 네트워크에서 진화게임을 이용한 효율적인 협력 스펙트럼 센싱 연구)

  • Kang, Keon-Kyu;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.790-802
    • /
    • 2014
  • In cognitive radio technology, secondary users can determine the absence of PU by periodic sensing operation and cooperative sensing between SUs yields a significant sensing performance improvement. However, there exists a trade off between the gains in terms of probability of detection of the primary users and the costs of false alarm probability. Therefore, the cooperation group must maintain the suitable size. And secondary users should sense not only the currently using channels and but also other candidates channel to switch in accordance with sudden appearance of the primary user. In this paper, we propose an effective group cooperative sensing algorithm in distributed network situations that is considering both of inband and outband sensing using evolutionary game theory. We derived that the strategy group of secondary users converges to an ESS(Evolutionary sable state). Using a learning algorithm, each secondary user can converge to the ESS without the exchange of information to each other.

Full-Duplex Communication in Cooperative Cognitive Radio Network (협력 인지 통신망에서의 전 이중 통신)

  • Park, Sangwoo;Song, Iickho;Lee, Seungwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1374-1379
    • /
    • 2016
  • In almost all schemes of cooperative cognitive radio networks (CCRN), the users transmit and receive signals in half-duplex mode. In this paper, a design of CCRN adopting the full-duplex (FD) technique is addressed. In order to enable FD communication among users in the CCRN, simultaneous transmitting and receiving antennas are employed for the secondary users. Preliminary results from analysis and numerical evaluation indicate that the proposed FD multiple-input-multiple-output CCRN framework can provide a performance gain over the conventional CCRN frameworks.

Super-allocation and Cluster-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Miah, Md. Sipon;Yu, Heejung;Rahman, Md. Mahbubur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3302-3320
    • /
    • 2014
  • An allocation of sensing and reporting times is proposed to improve the sensing performance by scheduling them in an efficient way for cognitive radio networks with cluster-based cooperative spectrum sensing. In the conventional cooperative sensing scheme, all secondary users (SUs) detect the primary user (PU) signal to check the availability of the spectrum during a fixed sensing time slot. The sensing results from the SUs are reported to cluster heads (CHs) during the reporting time slots of the SUs and the CHs forward them to a fusion center (FC) during the reporting time slots of the CHs through the common control channels for the global decision, respectively. However, the delivery of the local decision from SUs and CHs to a CH and FC requires a time which does not contribute to the performance of spectrum sensing and system throughput. In this paper, a super-allocation technique, which merges reporting time slots of SUs and CHs to sensing time slots of SUs by re-scheduling the reporting time slots, has been proposed to sense the spectrum more accurately. In this regard, SUs in each cluster can obtain a longer sensing duration depending on their reporting order and their clusters except for the first SU belonged to the first cluster. The proposed scheme, therefore, can achieve better sensing performance under -28 dB to -10 dB environments and will thus reduce reporting overhead.

Hybrid SDF-HDF Cluster-Based Fusion Scheme for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • El-Saleh, Ayman A.;Ismail, Mahamod;Ali, Mohd Alaudin Mohd;Arka, Israna H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1023-1041
    • /
    • 2010
  • In cognitive radio networks, cooperative spectrum sensing schemes are proposed to improve the performance of detecting licensees by secondary users. Commonly, the cooperative sensing can be realized by means of hard decision fusion (HDF) or soft decision fusion (SDF) schemes. The SDF schemes are superior to the HDF ones in terms of the detection performance whereas the HDF schemes are outperforming the SDF ones when the traffic overhead is taken into account. In this paper, a hybrid SFD-HDF cluster-based approach is developed to jointly exploit the advantages of SFD and HDF schemes. Different SDF schemes have been proposed and compared within a given cluster whereas the OR-rule base HDF scheme is applied to combine the decisions reported by cluster headers to a common receiver or base station. The computer simulations show promising results as the performance of the proposed scenario of hybridizing soft and hard fusion schemes is significantly outperforming other different combinations of conventional SDF and HDF schemes while it noticeably reduces the network traffic overhead.

Opportunistic Relaying Based Spectrum Leasing for Cognitive Radio Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • Spectrum leasing for cognitive radio (CR) networks is an effective way to improve the spectrum utilization. This paper presents an opportunistic relaying based spectrum leasing for CR networks where the primary users lease their frequency band to the cognitive users. The cognitive users act as relays for the primary users to improve the channel capacity, and this improved capacity is used for the transmission of secondary users' data. We show that the cognitive users can use a significant portion of the communication resource of primary networks while maintaining a fixed target data rate for the primary users. Moreover, the primary network is also benefited by the cooperating cognitive users in terms of outage probability. Information theoretic analysis and simulation results are presented to evaluate the performances of both primary and cognitive networks.

An Order Statistic-Based Spectrum Sensing Scheme for Cooperative Cognitive Radio Networks in Non-Gaussian Noise Environments (비정규 잡음 환경에서 협력 무선인지 네트워크를 위한 순서 기반 스펙트럼 센싱 기법)

  • Cho, Hyung-Weon;Lee, Youngpo;Yoon, Seokho;Bae, Suk-Neung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.943-951
    • /
    • 2012
  • In this paper, we propose a novel spectrum sensing scheme based on the order statistic for cooperative cognitive radio network in non-Gaussian noise environments. Specifically, we model the ambient noise as the bivariate isotropic symmetric ${\alpha}$-stable random variable, and then, propose a cooperative spectrum sensing scheme based on the order of observations and the generalized likelihood ratio test. From numerical results, it is confirmed that the proposed scheme offers a substantial performance improvement over the conventional scheme in non-Gaussian noise environments.

Cooperative Multi-relay Scheme for Secondary Spectrum Access

  • Duy, Tran-Trung;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.273-288
    • /
    • 2010
  • In this paper, we propose a cooperative multi-relay scheme for a secondary system to achieve spectrum access along with a primary system. In the primary network, a primary transmitter (PT) transmits the primary signal to a primary receiver (PR). In the secondary network, N secondary transmitter-receiver pairs (ST-SR) selected by a centralized control unit (CCU) are ready to assist the primary network. In particular, in the first time slot, PT broadcasts the primary signal to PR, which is also received by STs and SRs. At STs, the primary signal is regenerated and linearly combined with the secondary signal by assigning fractions of the available power to the primary and secondary signals respectively. The combined signal is then broadcasted by STs in a predetermined order. In order to achieve diversity gain, STs, SRs and PT will combine received replicas of the primary signal, using selection combining technique (SC). We derive the exact outage probability for the primary network as well as the secondary network. The simulation results are presented to verify the theoretical analyses.