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Abstract 

In this paper, we propose an algorithm to conserve resources of the common control channel in a cognitive radio 
network by rejecting the redundant users using cooperative spectrum sensing. The proposed scheme is investigated 
under the paradigm of active spectrum sensing and a sequential detection technique. The algorithm is based on the 
J-divergence between the hypotheses of non primary user operation and the otherwise case. We select the most 
significant eigenvalues, which primarily affect the global statistical test. For the case where interference is from a 
secondary system transmission, a match filter is first employed to remove the degradation, and then the proposed 
algorithm is employed to remove the cooperative sensing nodes. Numerical results are provided and compared with 
conventional cases in order to validate the performance of the proposed algorithm. 
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Ⅰ. Introduction

The continuous increase in wireless services and the 

accompanying great increment in radio spectrum de-

mand are now revealing the scarcity of any new radio 

frequency band allocation. This, in turn, reveals the need 

for a secondary system that is able to coexist with exist-

ing licensed spectra. Fortunately, the scarcity of radio 

spectra is actually related to the ineffective utilization of 

the currently granted spectrum rather than representing a 

real shortage. A survey of the fixed granted band rang-

ing from 30 MHz to 3GHz has indicated the presence 

of numerous white spaces that would be available for a 

secondary system [1]. The Federal Communication Co-

mmission (FCC) has shown interest in developing and 

investigating a secondary system for the white spaces in 

TV bands [2]. 

Any secondary system has to be able to guarantee the 

first priority of the primary one. The new system also 

has to have a low cost for infrastructure installation and 

must be compatible with the legacy primary system. In 

this sense, because of its ability to sense the presence of 

licensed users, Cognitive Radio (CR) is a competitive 

candidate compared to others such as data base registry 

or beacon signaling approaches [1]. 

A number of studies have proposed cooperative spec-

trum sensing models that rely on multi-radio observation 

to overcome the obstacles of the channel, noise un-

certainty, and long sensing period [3]～[7]. These  mo- 

dels fall into two categories: concurrent combination of 

the cooperative sensing results [3]～[5] and sequential 

combination of the reported sensing results [6], [7]. 

Recently, a particular sequential detection paradigm was 

proposed by Qiyue Zou, et al. [8], which provides a ro-

bust approach to obtain a quick detection for spectrum 

sensing. The scheme allows each cooperative node to 

forward each observation sample to the base station 

(BS) for global sensing. The proposal also considers the 

uncertainty of noise in the sensing operation. 

Cooperative sensing models have been quite benefi-

cial for resolving the limitations of local spectrum sen-

sing. However, cooperative sensing is still limited in the 

periodically quiet sensing time when neither transmi-

ssion nor reception by the secondary user is allowed. A 

recent paper [9] has introduced a scheme called active 

spectrum sensing, where the transmission or reception 

intervals conventionally prohibited from any sensing ope-

ration can be exploited for spectrum sensing. In this 

paradigm, the users that are free from both signal trans-

mission and reception (we refer to this type of user as 
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a free secondary user in the scope of the paper) are per-

mitted to use the active period for sensing. This has ex-

tended the ability of local sensing since a larger number 

of samples are employed to carry out spectrum detec-

tion. 

Although the reliability of local sensing is much im-

proved, the geographical discrimination among secon-

dary users (SUs) can result in large differences in their 

observations. For example, due to their geographically 

separate positions, some users will sense the on active 

state of primary user (PU), while the others have the op-

posite result. Hence, the cooperative scheme is actually 

a useful method in this situation. Conservation of power 

in each device is important, so further reduction of the 

sample size is still necessary to decrease the on operat-

ing state time. The device will be allowed to assume a 

sleep mode as soon as possible to save power.

In this paper, we expand upon previous work and in-

vestigate a model where several free SUs cooperate to 

implement spectrum detection during their active peri-

ods. We also consider the sequential detection as pro-

posed previously [8] in the paradigm of a cooperative 

model. This cooperative detection scheme provides very 

quick detection, on the one hand, while the active sens-

ing paradigm, on the other hand, supplies the large limit 

for the sample size. Thus, the combination of both me-

thods could bring about a robust detection performance. 

Using this model, we propose algorithms to reduce the 

number of nodes that participate in the cooperative sen-

sing. We also analyze the degradation caused by inter-

ference originating from BS to SU transmission and in-

troduce a method that uses the matched filter to reduce 

this effect. The structure of the article is divided into 5 

parts: (I) Introduction, (Ⅱ) System model, (Ⅲ) Perfor-

mance analysis, (Ⅳ) Numerical simulation, (Ⅴ) Conclu-

sion.

Ⅱ. System Model

In this scheme, we model PU signal s  as the Gau-

ssian signal with a zero mean and variance 
2
ss , the noi-

se of the user m-th mn is AWGN, ( )2~ 0,m mn N s . The 
secondary transmission signal carried out by the BS to 

a specific SU is denoted by z  where ( )2~ 0, zz N s .  For  
the conventional case in which there is only the spec-

trum sensing operation, the model can be constructed as 

the two hypotheses of no PU signal with the received 

signal at the BS is: 0 : m mH x n=  and having PU signal 

with: 1 : m m mH x h s n= + where mh is denoted as the chan-

nel gain between the SU source to the m-th user. 

Because the active sensing scheme allows the BS to car-

ry out the transmission to a specific SU during the sens-

ing time, the other nearby SUs may experience interfer-

ence from this signal, for the no PU presence case: 

0 : m m mH x l z n= +% , or for the PU in active mode: 1 : m m m mH x h s l z n%

: m m m mH x h s l z n= + + , where ml is channel gain describing the 

gain to transmit the signal from the BS to m-th user and 

back from m-th user to BS. 
2
0,ms ,

2
1,ms ,

2
0,ms% ,

2
1,ms%  denote, 

respectively, the variances of the received signal at BS 

for cases of 0H , 1H , 0H% , 1H% . We can easily obtain that
2 2
0,m ms s= ,

2 2 2 2
1,m m s mhs s s= + , 

2 2 2
0,m m z mls s s= +%  and 

2 2 2 2 2 2
1,m m s m z ms s s s= + +%

2 2 2 2 2 2
m m s m z mh ls s s s= + + . Under the scheme of sequential de-

tection, as proposed in [8], each user reports its log-like-

lihood test in a sample-by-sample manner. The statistical 

test of the m-th user at n-th sample is ( ), log logLLR n m p p= -

1, 0,, log logm mLLR n m p p= - (LLR stands for the log likelihood ratio 

test). The combination is undertaken by the BS as fol-

lows:
 

( )
1 1

,
N M

n m

LLR LLR n m
= =

=åå
(1)

 

Under the context of no SU transmission, the test is:
 

[ ]
2
0,2

2 2 2
1 1 0, 1, 1,

1 1 1
log

2

N M
m

m
n m m m m

LLR x n
s

s s s= =

æ öæ ö æ ö
= - +ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷

è ø è øè ø
åå

(2)
 

Ⅲ. Performance Analysis

3-1 Non SU Interference

In this sub-section, we investigate the performance of 

the case when no SU signal is transmitted during the 

sensing time. Here, A and B  are alternatively the thre-

shold for the hypothesis 0H or 0H%  and thresholds for 

1H or 1H% . As introduced in [8], these thresholds do not 

depend on the distribution of the received signal. The 

threshold values are as given : 
1

logA
b

a

-æ ö
= ç ÷

è ø
 and 

1
logB

a

b

æ - ö
= ç ÷

è ø
 where α, 1a << , is the false alarm 

probability and β, 1b << , is the missed detection 

probability. The average samples number (ASN) for the 

decision ‘0’, which denotes for no PU presence in the 

case of 0H , is given as:
 

{ }
( ) ( )
( )( ) ( )0 2 2 2 2

0, 1, 1, 0,2 1 2 log 2

B A A B

H stop

m m m m

A B Ae Be e e
E N

s s s s

- - - + -
=

- +
(3)

 

and for the decision ‘1’ denoting the PU presence, the 

ASN is expressed as:
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{ }
( ) ( )

( )( ) ( )1 2 2 2 2
1, 0, 1, 0,2 1 2 log 2

B A A B

H stop

m m m m

A B Ae Be e e
E N

s s s s

- - - -- - + -
=

- -
(4)

 

For large ASN, the Central Limit Theorem allows ap-

proximation of the LLR distribution to the Gaussian dis-

tribution as follows:
 

( )
( )

2
0 0 0

2
1 1 1

: ~ ,
 

: ~ ,

H LLR N

H LLR N

m s

m s

ì
ï
í
ïî (5)

 

with 0 0
2

stopN
m u= , 2 2

0 0
2

stopN
s r= , 1 1

2

stopN
m u= , 2 2

1 1
2

stopN
s r= , 

where 

2 2
0, 0,

0 2 2
1 11, 1,

1 log
M M

m m

m mm m

s s
u

s s= =

æ öæ ö æ ö
= - +ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷

è ø è øè ø
å å

2
2
0,2

0 2
1 1,

1
M

m

m m

s
r

s=

æ öæ ö
ç ÷= -ç ÷ç ÷ç ÷è øè ø
å

2 2
1, 0,

1 2 2
1 10, 1,

1 log
M M

m m

m K mm m

s s
u

s s= + =

æ öæ ö æ ö
= - +ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷

è ø è øè ø
å å

22
1,

1 2
0,

1m

m

s
r

s

æ ö
= -ç ÷ç ÷
è ø

3-2 The Uncorrelated SU Interference

So far, equation (2) has only considered the case 

where the received sensing signal is not contaminated 

by the SU interference. However, due to the active sens-

ing, the BS may transmit its data to a specific user. Due 

to imperfect beamforming, a neighbor user can be af-

fected by this transmitted SU signal leakage. In response 

to this interference, the LLR distribution will differ from 

the LLR-test analysis results. Hence, the LLR equation 

should be changed to follow the actual LLR distribution, 

which is given as:
 

( )
( )

2
0 0 0

2
1 1 1

: ~ ,

: ~ ,

H LLR N

H LLR N

m s

m s

ìï
í
ïî

% % %

% % %
(6)

 

where ( )0 0
2

stopN
Km u= %% , ( )2 2

0 0
2

stopN
Ks r= %% , ( )1 1

2

stopN
Km u= %% , 

( )2 2
1 1

2

stopN
Ks r= %%  with 

( )
2 2
0, 0,2

0 0, 2 2 2 2
1 1 10, 1, 1, 1,

1 1
1 log

K M M
m m

m

m m K mm m m m

K
s s

u s
s s s s= = + =

æ öæ ö æ ö æ ö
= - + - +ç ÷ç ÷ ç ÷ ç ÷ç ÷ ç ÷ ç ÷ç ÷

è ø è ø è øè ø
å å å% %

( )
2 2

2
0,2 4

0 0, 2 2 2
1 10, 1, 1,

1 1
1

K M
m

m
m m Km m m

K
s

r s
s s s= = +

æ öæ ö æ ö
ç ÷= - + -ç ÷ ç ÷ç ÷ ç ÷ç ÷è ø è øè ø
å å% %

( )
2 2
1, 0,2

1 1, 2 2 2 2
1 1 10, 1, 0, 1,

1 1
1 log

K M M
m m

m

m m K mm m m m

K
s s

u s
s s s s= = + =

æ öæ ö æ ö æ ö
= - + - +ç ÷ç ÷ ç ÷ ç ÷ç ÷ ç ÷ ç ÷ç ÷

è ø è ø è øè ø
å å å% %

( )
2 2

2
1,2 4

1 1, 2 2 2
1 10, 1, 0,

1 1
1

K M
m

m
m m Km m m

K
s

r s
s s s= = +

æ öæ ö æ ö
ç ÷= - + -ç ÷ ç ÷ç ÷ ç ÷ç ÷è ø è øè ø
å å% %

K denotes the number of user being affected by the 

SU signal leakage.

From this situation, since the statistical test does not 

match with the practice, the threshold A  and B  cannot 

hold the false alarm and missed detection probability 

fP a= , MP b= as designed. For a value of the stop 

ASN stopN , the false alarm and missed detection proba-

bility are given as: 
 

( ) ( )

( )

1 2
0 0 0

0

0

0

2 2 2

2

stopA A

f

stop

NN N
Q K

A
P Q Q

N
K

a r u u
m

s
r

-
æ ö

- -ç ÷æ ö- ç ÷= =ç ÷
ç ÷è ø
ç ÷
è ø

%
%

%

%
%

(7)
  

( ) ( )

( )

1 2
1 1 1

1

1

1

2 2 2

2

stop B B

M

stop

N N N
K Q

B
P Q Q

N
K

u b r u
m

s
r

-
æ ö

- -ç ÷æ ö- ç ÷= =ç ÷
ç ÷è ø
ç ÷
è ø

%
%

%
%

(8)
 

where { }
0B H stopN E N= and { }

1A H stopN E N= , which have 

been derived in (3) and (4).

3-3 Redundant Node Removal

3-3-1 Algorithm in the Case of Non SU Interference

As the number of users increases, more samples are 

collected to exploit gain sensing. Nevertheless, the limi-
ted common control channel restricts the maximum co-

operative users. Furthermore, due to collisions among 
the users when competing for reporting, each log-like-

lihood sample test can result in increased overall sensing 
time [7]. In this section, we propose an algorithm to se-

lect the most meaningful users that mainly affect the test 
results, in order to distinguish between two hypotheses. 
Here, ,0XR , ,1XR  denote the covariance matrices of two 

hypotheses 0H and 1H . For the case of non SU interfer-

ence, ,0XR , ,1XR can be expressed as: 
 

{ }2 2 2
,0 0,1 0,2 0,, ,..,X mR diag s s s=

{ }2 2 2
,1 1,1 1,2 1,, ,..,X mR diag s s s=

 

The first part of LLR in (2) can be rewritten in the 

quadratic form as below [9]:
 

( )
( )

1 1
,0 ,1

1        

T
X X

T

LLR X R R X

Y I Y

- -

-

¢ = -

= - L
(9)
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with [ ]1 2, ,..,
T

MX x x x= , [ ]1 2, ,..,
T

MY y y y= , 
1 2
,0

T
XY U R X-= , 

1 2 2
,0 ,1 ,0

T T
X X XR R R U U- - = L  and I  is the unit matrix. The ma-

trix L is the diagonal and contains the eigenvalues of 

ml , 1..,m M= the matrix 
1 2 2
,0 ,1 ,0

T
X X XR R R- -

. The above trans-

formation (from X to Y) introduce the special property: 

( )0 : ~ 0,H Y N I and ( )1 : ~ 0, TH Y N U UL .

The J-divergence between the two hypotheses can 

measure how the LLR¢ can distinguish the between them 

under the hypothesis test.  The J-divergence is given as 

[10] :
 

1

1

2
M

m m
m

J l l -

=

é ù= + -ë ûå
(10)

 

We can see from (9) that when the ml is unity, its 

contribution to J is zero. Hence, the users correspon- 
ding to these unit eigenvalues should be removed first. 

Within a given ASN 0N , the selection method is simply 

the removal of the lowest 1 ml- users. Hence, we pro-

pose algorithm 1 to remove the unimportant users based 

on the requirement of 0N . Without a loss of generality, 

we can assume that 1 2 .. 1 .. 0Ml l l> > > > > > . The se-

lected users are saved in the set S .

Algorithm 1

0: begin

1: initiate: 1i = , j=M , { }S = Æ

2: repeat

3: if 
1

i jl l -> then

- Select user i by add i to S

- 1i i= +

    else

- select user j  add j to S

- 1j j= -

    endif

4: calculate 
1 2m m

m S

J l l -

Î

é ù= + -ë ûå within the selected 

users contained in 

5: with the result of S calculate:

  ( ) ( ){ }
0 1

max ,stop H stop H stopN E N E N=

6: until 0stopN N£ or i M> or 1j <

end

In the case where total J-divergence values of all no-

des cannot achieve the requirement of ASN, the algo-

rithm also supplies a method to add all users with ei-

genvalues of 0ml ¹ .

Algorithm 1, however, only considers the covariance 

matrices of M users at a single sample. For a general 

case, the ASN that is equal to ( ){
0 1

max ,stop H stop H stopN E N E N=

( )}
0 1

max ,stop H stop H stopN E N E N  is used to achieve the decision. The co-

variance matrices ,0XR , ,1XR  should therefore be replaced 

by ,0XR% , ,1XR%  as follows:
 

( ) ( )

,0

,0

,0

,0

0 .. 0

0 .. 0

.. .. .. ..

0 0 ..
stop stop

X

X

X

X N M N M

R

R
R

R
´

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

%

 

and
 

( ) ( )

,1

,1

,1

,1

0 .. 0

0 .. 0

.. .. .. ..

0 0 ..
stop stop

X

X

X

X N M N M

R

R
R

R
´

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

%

 

The covariance matrices represent the correlation of 

the received signal 1 2, , ..,
TT T T

NX X X Xé ù= ë û
& & & , with n MX x n x n=&

( ) ( )1 ,..,
T

n MX x n x n= é ùë û
& being the M reported signal at the n-th 

sample. Similarly, we can employ equation (9) to ach-

ieve the eigenvalues 1,1 1, , ,,.., .., ,..,M n m n Ml l l l . Algorithm 1 

should be replaced by Algorithm 2 as follows:
 

Algorithm 2

0: begin

1: initiate: { }1,2,..,S M=

2: if ( ) ( ){ }
0 1 0max ,stop H stop H stopN E N E N N= <  then

/* if all the users are selected and the stopN satisfies 

the requirement of 0N samples*/

3: Calculate J-divergence contributed by each user

  
1

, ,
1

2
N

m n m n m
n

J l l -

=

é ù= + -ë ûå , 1,..,m M=

4: Sort( 1,.., ,..,m MJ J J ). 

/* Without loss of the generality, we assuming 

1 .. ..m MJ J J> > > > */

5: j M=

6: repeat
7: Remove user j -th out of S

8: Calculate stopN  within the updated S

      ( ) ( ){ }
0 1

max ,stop H stop H stopN E N E N=

9: Calculate ,0XR% , ,1XR% , L within the stopN
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10: Calculate J-divergence contributed by each user

11: 
1

, ,
1

2
N

m n m n m
n

J l l -

=

é ù= + -ë ûå , 1,.., 1m M= -

12: Sort( 1 1,.., ,..,m jJ J J - ).

13: Until 0stopN N³

14: Add the last removed user out of S

15: end if

16: end

3-3-2 Node Removal for Correlated SU Interference

In the case where BS starts to transmit data to a spe-

cific user, the statistical LLR test pre-designed in (2) 

does not reflect the true distribution of the received 

signal. In the scope of this paper, we assume that no de-

lay exists between the SU signal transmitted by the BS 

and one that contributes to the reported sample ( )mx n . 

Thus, the BS can rely on its SU signal transmitted to es-

timate the power of interference contributing to the re-

ceived signal, as given in the following:
 

0

ˆ
m

T

z mP x zdt
æ ö

= ç ÷
è ø
ò

 

From this, the overall channel gain to transmit the SU 

signal from the BS to the m-th user and back from m-th 

user to BS is estimated as:
 

2

0

ˆ
T

m m zl x zdt s
æ ö

= ç ÷
è ø
ò

 

Relying on this estimation, the BS can calculate
2
0,ms% , 

2
1,ms% , ,0XR , ,1XR  , ,0XR% , ,1XR% and update the LLR test. In the 

scheme of SU interference, the received signals con-

taminated by z are correlated. Hence, the LLR test in 

(2) is rewritten as follows:
 

( ) ( )

( )

1 1 1

,01 1
,0 ,1

,1

, ,

1 1
        = log

2 2

stopN K M

n m m K

XT
X X

X

LLR LLR n m LLR n m

R
X R R X

R

= = = +

- -

æ ö
= +ç ÷

è ø

æ ö
ç ÷- +
ç ÷
è ø

å å å

 

After updating the statistical test, the BS is able to 

apply the proposed node removal algorithm to remove 

the redundant users to save the control channel re-

sources. 

Ⅳ. Simulation

In this part, we survey a case where BS selects the 

7M = free SU users in its region where the sensing 
channel of each has the same value: 0.3162h = , and the 

PU signal variance is assumed at 2 1ss = . Each of SU 

users tolerates a number of zero mean AWGN with re-

spective variances: 2 1,  0.9,  0.8,  0.7,  0.6,  0.5,  0.4is = . The 

BS to SU signal z  is assumed to be a Gaussian signal 
with a zero mean and unit variance. The channel gain 
according  to  z  at  each user  is  .33, .45, .74,.51, .39,.91,.97ml =

.33, .45, .74,.51, .39,.91,.97 . In this part, we consider two cases of z : the 

uncorrelated interference between SU users and the cor-

related interference of each user in terms of this signal.

Fig. 1 illustrates the cases where the statistical test 

mismatches with the received signal distribution. In this 

case, the log likelihood test is taken under the case of  

(a) ASN vs PF

(b) Practical PF, PM vs PF

Fig. 1. Detection performance of using the non-interferen-
ce statistical test when SUs are in the cases of 
uncorrelated interference and correlated interferen-
ce.
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(a) ASN vs PF

(b) Practical PF, PM vs PF

Fig. 2. Detection performance using suitable statistical tests 
when SUs are in the three cases of non-interfe-
rence, uncorrelated interference, and correlated in-
terference.

  

 

non-interference at SU. Fig. 1a shows that the ASNs of 

the received signal contaminated by uncorrelated inter-

ference (marked as “u.int” in the figure) and the corre-

lated interference (marked as “c.int) are fairly low in 

comparison with ASN analyzed by (3) and (4). Ne-

vertheless, Fig. 1(b) indicates that this detection is not 

correct because the experimental probability of a false 

alarm is 1 for all cases of the designed false alarm and 

missed detection probability. 

Fig. 2 illustrates the case when the statistical test is 

used appropriately in each case of non-interference, un-

correlated interference, and correlated interference. The 

(a) ASN vs PF

(b) Practical PF, PM vs PF

Fig. 3. The two algorithms for reducing the cooperative 
node within the constraint of the ASN being be-
low 400 samples.

figure shows that the ASNs for the case of the interfer-

ence cases are greater than those in Fig. 1. In Fig. 2(b), 

the false alarm and missed detection probability have re-

duced to become approximately the designed values.

In Fig. 3, the two algorithms for reducing the number 

of cooperative nodes are investigated under the non-in-

terference scheme. The figure shows that most of the 

simulation results lie below the preselected ASN at 400 

samples or slightly above this value. Fig 3(b) shows that 

all of the experimental false alarm and missed detection 

values are below the preselected maximum value. Hen-

ce, this implies that the algorithms have worked co-

rrectly.

Fig. 3 describes the performance of the two algori-

thms in the cases of the non-interference, uncorrelated 
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interference, and correlated interference. Fig. 3 shows 

that the value of the ASNs is less than the required val-

ue N0=500 and the ASNs do not follow a linear de-

crease when the false alarm and missed detection 

increase. Fig. 3(b) shows how many users are selected 

after the removal. The total number of users has been 

reduced by almost half.    

 

Ⅴ. Conclusion

In this paper, we considered the scheme of active 

spectrum sensing in the cooperative model via sequen-

tial detection. We have shown that, in the scheme of ac-

tive spectrum sensing, the uncorrelated interference and 

the SU transmission signals have been significantly af-

fected by the performance of the sequential detection. 

Coping with the limited resources in the control channel, 

we propose two algorithms to reduce the number of co-

operative nodes. As the simulations showed, the algo-

rithms are able to eliminate redundant users within the 

constraint of a preselected ASN while maintaining a de-

tection performance that satisfies system requirements.
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