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Abstract 
 

An allocation of sensing and reporting times is proposed to improve the sensing performance 

by scheduling them in an efficient way for cognitive radio networks with cluster-based 

cooperative spectrum sensing. In the conventional cooperative sensing scheme, all secondary 

users (SUs) detect the primary user (PU) signal to check the availability of the spectrum during 

a fixed sensing time slot. The sensing results from the SUs are reported to cluster heads (CHs) 

during the reporting time slots of the SUs and the CHs forward them to a fusion center (FC) 

during the reporting time slots of the CHs through the common control channels for the global 

decision, respectively. However, the delivery of the local decision from SUs and CHs to a CH 

and FC requires a time which does not contribute to the performance of spectrum sensing and 

system throughput. In this paper, a super-allocation technique, which merges reporting time 

slots of SUs and CHs to sensing time slots of SUs by re-scheduling the reporting time slots, 

has been proposed to sense the spectrum more accurately. In this regard, SUs in each cluster 

can obtain a longer sensing duration depending on their reporting order and their clusters 

except for the first SU belonged to the first cluster. The proposed scheme, therefore, can 

achieve better sensing performance under -28 dB to -10 dB environments and will thus reduce 

reporting overhead. 

 
Keywords: cognitive radio network, super-allocation, cluster head, fusion center 
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1. Introduction 

Cognitive radio (CR) is a new technology in the wireless communications era that has 

changed the policy of spectrum allocation from a static to a more flexible paradigm [1]. 

Recently, CRs that enable opportunistic access to under-utilized licensed bands have been 

proposed as a promising technology for the improvement of spectrum operations. In an 

overlay cognitive radio networks, an overlay waveform is used to exploit idle spectra and 

transmit information data within these unused regions. On the other hand, in an underlay 

cognitive radio networks, an underlay waveform with low transmit power used to transmit 

data without harmful effects on the primary network [2]. In this paper, we focus on overlay 

networks where secondary users find the idle channel with spectrum sensing. A precondition 

of secondary access is that there shall be no interference with the primary system [3]. This 

means spectrum sensing has a vital role in a CR network (CRN).  

There are a number of spectrum sensing techniques, including matched filter detection, 

cyclostationary detection, and energy detection [4-6]. Matched filter detection is known as the 

optimum method for detection of the primary users when the transmitted signal is known. The 

main advantage of matched filtering is that it takes a short time to achieve spectrum sensing 

below a certain value for the probability of false alarm or the probability of detection, 

compared to the other methods. However, it requires complete knowledge of the primary 

user’s signaling features, such as bandwidth, operating frequency, modulation type and order, 

pulse shaping, and packet format. Cyclostationary detection offers good performance but 

requires knowledge of the PU cyclic frequencies and requires a long time to complete sensing. 

On the other hand, energy detection is an attractive and suitable method due to its easy 

implementation and low computation complexity. However, it is vulnerable to the uncertainty 

of noise power, and cannot distinguish between noise and signal. Conversely, its major 

limitation is that the received signal strength can be dangerously weakened at a particular 

geographic location due to multi-path fading and the shadow effect [7].  

In order to improve the reliability of spectrum sensing, cooperative spectrum sensing was  

proposed [8-11]. Each SU performs local spectrum sensing independently, and then forwards 

the sensing results to the fusion centre (FC) through the noise-free reporting channels between 

the SUs and the FC. However, the reporting channels are always subject to fading effects in 

real environments [12]. When reporting channels become very noisy, cooperative sensing 

offers  no advantages [13-14]. To overcome this problem, Zhang et al. [15] and Xia et al. [16] 

proposed a cluster-based cooperative sensing scheme by dividing all the SUs into a number of 

clusters and selecting the most favorable SU in each cluster as a CH to report the sensing 

results, which can dramatically lessen the performance deterioration caused by fading of the 

wireless channels. In these schemes, the SU selected as the CH has to fuse sensing data from 

all cluster members (the SUs in this cluster). However, in these schemes, each SU’s reporting 

time slot and the CH reporting time slot offer no contribution to spectrum sensing, while SU 

sensing and reporting times and CH reporting time are in different time slots.  

Jing et al. proposed a superposition-based cooperative spectrum sensing scheme that 

increases the sensing duration by superpositing the SUs’ reporting duration into the sensing 

duration [17]. However, this scheme adopts various individual reporting durations. In this case, 

synchronization problems occur at the FC. Moreover, the data processing burden at the FC 

increases for a large CR network.  

In this paper, we propose a super-allocation and cluster-based cooperative spectrum sensing 

scheme to provide more efficient spectrum sensing. In this scheme, each SU achieves a 

non-fixed and longer sensing time for sensing the PU signal bandwidth, because both the SUs 
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and the CHs are super-allocated to different reporting time slots. On the other hand, both the 

SU and the CH reporting time slots are of fixed length because the synchronization problem 

for the FC is relieved. In addition, this proposed scheme decreases the data processing burden 

of the FC while all the SUs in the CRN are divided into fewer clusters, such that each SU 

reports its local decision to the corresponding CH, which then reports to the FC. Simulation 

results show that the proposed scheme can improve sensing performance in low 

signal-to-noise ratio (SNR) environment (i.e., -28 dB) and also greatly reduces reporting 

overhead, in comparison with conventional cluster-based cooperative spectrum sensing 

schemes. 

The remainder of the paper is organized as follows. Section 2 describes the system model. 

Section 3 offers an overview of energy detection. Section 4 describes the conventional 

cluster-based cooperative spectrum sensing scheme. The proposed a super-allocation and 

cluster-based cooperative spectrum sensing scheme is presented in Section 5. Some 

simulations and comparisons are given in Section 6. Finally, our conclusion is in Section 7. 

2. System Model 

Spectrum sensing can be formulated as a binary hypothesis-testing problem as follows: 
 

   
1

0

: PUsignal ispresent,

: PUsignal isabsent.
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    (1) 

 

Each SU implements a spectrum sensing process which is called local spectrum sensing, to 

detect the PU’s signal. According to the status of the PU, the received signal of an SU can be 

formulated as follows: 
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where ( )jy t  represents the received signal at the  j-th SU, ( )jh t denotes the gain of the 

channel between the j-th SU and the PU, ( )x t with varance of 
2

x  represents the signal 

transmitted by the PU, and ( )j t  is a circularly symmetric complex Gaussian (CSCG) with 

variance of 2
, j  at the j-th SU. 

In addition, we make the following assumptions [18]: 

• ( )x t is a binary phase shift keying (BPSK) modulated signal.   

• ( )x t  and ( )j t  are mutually independent random variables. 

• the SU has complete knowledge of noise and signal power. 

Cluster-based cooperative spectrum sensing in a CR network is shown in Fig. 1 which 

contains N SUs, K clusters, and one FC. In this network, all the SUs are separated into K 
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clusters, in which each cluster contains Nc SUs, and the cluster head CHk , k=1,2, …, K, is 

selected to process the collected sensing results from all SUs in the same cluster. 

For sensing duration, first, each SU calculates the energy of its received signal in the 

frequency band of interest. Local decisions are then transmitted to the corresponding CH 

through a control channel, which will combine local decisions to make a cluster decision. 

Secondly, all cluster decisions will be forwarded to the FC through a control channel. At the 

FC, all cluster decisions from the CHs will be combined to make a global decision about the 

presence or absence of the PU signal. 

 

Fig. 1. Cluster-based cooperative spectrum sensing in cognitive radio network 

  

3. Overview of Energy Detection 

The energy detection method has been demonstrated to be simple, quick and able to detect 

primary signals, even if prior knowledge of the signal is unknown [19-22]. A block diagram of 

the energy detection method in the time domain is shown in Fig. 2. To measure the energy of 

the signal in the frequency band of interest, a band-pass filter is first applied to the received 

signal, which is then converted into discrete samples with an analog-to-digital (A/D) 

converter. 
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Fig. 2. Block diagram of the energy detection scheme 

 

An estimation of the received signal power is given by each SU with the following equation: 
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       (3) 

 

where ( )jy t  is the t-th sample of a received signal at the j-th SU, and L is the total number of 

samples. s sL T F , where sT and sF are the sensing time and signal bandwidth in hertz, 

respectively. According to the central limit theorem, for a large number of samples, e.g., 

250L  , the probability distribution function (PDF) of jE , which is a chi-square distribution 

under both hypothesis 0H  and hypothesis 1H , can be well approximated as a Gaussian random 

variable, such that 
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where  2, N  deontes a Gaussian distribution with mean of   and variacne of 
2 , 

0, j and 2

0, j represent the mean and variance, respectively, for hypothesis 0H , and 1, j and 

2

1, j  represent the mean and variance for hypothesis 1H . 

Lemma 1. When the primary signal is a BPSK modulated signal and noise is a CSCG, the 

decision rule in Eq. (4) is modified as follows: 
 

    

   

2 4

2 4

1
,

1
1 , 1 2

j

L
E

L

 

 

 

   

  
 

  
 

      

N

N

   (5) 

 

where 
2

2

x







 which is the SNR of the primary signal at the j-th SU. The SNR is a constant in 

the non-fading additive white Gaussian noise environment [23]. Here, we omit the subscript of 

j in 
2
, j , which denotes that index of SU, to simplify the notation. 

Proof: For hypothesis 1H , the mean 1, j is expressed as 
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From Boyd and Vandenberghe [23], variance 2
1, j  is 
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For a complex M-ary quadrature amplitude modulation signal [24],  
4

E x t is given as  
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    (8) 

 

For the BPSK signal [24], then we set 4M  .,By substituting the value 4M   in Eq. (8). 
 

    
4 4.xE x t        (9) 

 

For the CSCG noise signal [23],  
4

E t is given as 

 

    
4 42 .E t                        (10) 

 

Substituting the values  
4

E x t and  
4

E t in Eq. (7), we get 

 

   

 

 

2 4 4 4 2 2 4
1,

2
4 2 2 4

2

4

1
2 2

1 1
2 1 2

1
1 2 .

j x x x

x
x

L

L L

L

  

  





      


   



 

     
 

 
      

  

 

   (11)  

 

For hypothesis 0H , substituting the value 
2 0x   in Eq. (6), mean 0, j is 

 

   
2

0, .j         (12) 

 

Again, substituting the value 
2 0x   in Eq. (7), variance 2

0, j is 
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Then, we can have distributions of a decision statistic under null and alternative hypotheses as 

in Eq. (5).                

By the definition of a false alarm probability in a hypothesis testing with a decision statistic 

of jE  depending on sT , and a decision threshold of j , the probability of false alarm for the 

j-th SU is given by  
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where  Q x  is the Gaussian tail function given by  
21

exp
22 x

t
Q x dt



  
  

 
 . Form the 

Lemma 1, the probability of false alarm under a CSCG noise is given by  
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By the definition of a probability of detection in hypothesis testing and Lemma 1, the detection 

probability for the BPSK modulated primary signal under a CSCG noise for the j-th SU is 

given by 
 

 

 

 

1

1,

2
1,

2

, Pr[ | ]

1 .
1 2

j
d s j j j

j j

j

j s s

P T E H

Q

T F
Q



 

 








 

 
 
 
 

  
    
    

    (16) 

 

The last equality is obtained by using Eq. (5). 

With Eqs. (15) and (16), the probabilities of false alarm and detection for PU signal can be 

calculated when the duration of sensing time sT  is given. 
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4. Conventional Cluster-based Cooperative Spectrum Sensing 

A general frame structure for conventional cluster-based cooperative spectrum sensing is 

shown in Fig. 3. With this frame structure, all local decisions are forwarded to the CHs in the 

scheduled SU reporting time slots and are then forwarded to the FC in the scheduled CH 

reporting time slots. 
 

 

Fig. 3. A conventional cluster-based cooperative spectrum sensing scheme [16] 

 

Lemma 2. In conventional cluster-based cooperative spectrum sensing, the N SUs in the 

network adopt fixed sensing time slot 
con

sT  given by  
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to sense the PU’s signal with false alarm and detection probabilities of j
fP  and j

dP , 

respectively.  

Proof: We focus on the BPSK signal and CSCG noise. The probability of detection can be 

obtained with Eq. (18) by using the Eq. (17). 
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From Eq. (15), the probability of false alarm can be obtained with  
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By substituting Eq. (19) into Eq. (18) and rewriting this equation, we have  
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        1 11
1 2j j

s s f dT F Q P Q P 
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               (20) 

 

Defining the sensing time with the last equation in (20), i.e., con
s sT T , we can meet the 

requirement on false alarm and detection probabilities.       

Because all SUs in k clusters have the same fixed sensing time slot, 
con

sT , the sensing 

performance, i.e., false alarm and detection probabilities depend on SNR of a SU. Therefore, 

sensing performance is not improved with a fixed sensing time slot. In addition, the reporting 

time slot for the SU and the CH are not utilized.  

5. Proposed Super-allocation and Cluster-based Cooperative 
Spectrum Sensing Scheme 

In the conventional approach, sensing time slots, reporting time slots of SUs, and reporting 

time slots of CHs are strictly devided as shown in Fig. 3. Due to this rigid structure in the 

conventionanl approach, the reporting time slots of other SUs and CHs are not used for 

spectrum sensing.  However, these reporting time slots can be used in sensing the specturm by 

other SUs by scheduling sensing and reporting time slots effectively. To this end, a 

super-allocation and cluster-based cooperative spectrum sensing scheme is proposed by 

increasing the sensing time slot. In the proposed scheme, each SU can obtain longer sensing 

time slot because the other SU reporting times and the CH reporting times are merged to the 

SU sensing time. Therefore, the sensing time slots for SUs in the proposed scheme can be 

logner than those in the conventional scheme.  

Fig. 4 shows the proposed schduling method of sening and reproting time slots in the 

super-allocation for cluster-based cooperative spectrum sensing. In the figure, SUnk means the 

k-th SU in the n-th cluster in the network. To explain the duration of sensing time slot for SUnk, 

we define the durations of the sensing and reporting time for SUnk with 
nk

sT  and 
nk

rT , 

respectively. 
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Fig. 4. A super-allocation and cluster-based cooperative spectrum sensing scheme 

 

In this proposed scheme, the sensing time slot for the first SU in the first cluster, i.e. SU11, is 

equal to the sensing time slot in the conventional scheme, i.e., 
11 con

s s sT T T  . Except for SU11, 

other SUs can obtain longer sensing time slots by scheduling SU resproting slots followed by 

the repoting slot for the CH of that cluster. With such a schedulig method, SUs can sense the 

specurm during the resprting time slots of other SUs and CHs.  For example, the sensing time 

slot of SU12, 
12

sT , is equal to the total duration of sensing time slot and the reporting time slot 

of the SU11, i.e., 
12 11

s s rT T T  . Similarly, 
13

sT  becomes the sum of  the sensing duration of 

SU12 and the reporting duration of SU12, i.e., 
2

13 12 12 1

1

i

s s r s r

i

T T T T T


    . Obviously, the 

relationship of the sensing time slot 
1( 1)j

sT 
 of the SU1(j+1) with the sensing time slot and the 

reporting time slot of the previous SUs can be given by 
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     (21) 

 

for 1,2,3,......, cj N . 

When 
1prop j

r rT T  for 1,2,3,......, cj N , the sensing time slot of  j-th SU in the first cluster is 

written as 
 

 1 ( 1)j prop
s s rT T j T    (22) 
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Therefore, 
1 j

sT  in first cluster is greater than or equal to 
con

sT . 

For SU in the other clusters, the reporting time slots of SUs in the previous clusters and that 

of the previous CH can be used for a sesing time slot of SUs in the current cluster. Thus, 
nj

sT  is 

given by 
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1 1

,( 1)( ) ( 1) .

c

n k
iNnj ni

s s r

i i

prop prop prop

s c r r CH s r

T T T

n T N T T T j T



 

 

      

 
           (23) 

 

Here,  ,

prop

r CHT  is the duration of the reporting time slot of a CH. Therefore, we can obtain longer 

sensing time as an index of CH increases.    

5.1. Local Sensing 

As shown in Eq. (16), the detection probability
j

dP
 
is a function of parameters j ,  and 

s sT F . For fixed ,sF   and j , 
j

dP  is a function of sT , which can be represented as ( )j

d sP T .  

Lemma 3. In the proposed cluster-based cooperative spectrum sensing, the N SUs in the 

network adopts non-fixed sensing time slot 
nk

sT (
con

sT ) in Eq. (23)
 
to sense the PU’s signal. 

Therefore, sensing performance is improved over the conventional scheme.  

Proof: Let 
j

condP )( and 1

( )

j

d propP
 
denote the probability of detection for the conventional and 

proposed schemes, rspectively. When SU belongs to the first cluster, the CH reporting time 

slot is not included in its sesing time. 

Substituting the values of sT  and 
1 j

sT  in the Eq. (16), we have 
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When the sensing time 
1 j

sT becomes longer, then the detection probability  
j

d prop
P  increases 

obviously. Then, we show that  
 

 

1

( ) ( )

j j

d prop d conP P
 (26) 

                     (26) 

Because  ( 1) prop con

s r sT j T T     for 1,2,3,......, cj N . When ,1j then we get 

1

( ) ( )

j j

d prop d conP P .    

If SU is not inculded in the first cluser, ( )

nj

d propP
 
denotes the probability of detection for the 
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proposed scheme. In this case, the sensing time slot includes the CH reporting time slots. 

Substituting the value of 
nj

sT  in the Eq. (16), we get, 
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( 1)( ) ( 1)
, 1 .

1 2

prop prop prop

s c r r CH s r sjnj nj
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Therefore,        ( 1)
, ,cn N jnj nj

s j s jd prop d con
P T P T  

 .                                                                      

 

Each SU makes a local hard decision 
hd

jd  as follows. 

 

   1,

0,

nj nj

d prop f prophd
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if P P
d

Otherwise

 
 


                                                 (28)  

       

5.2 Cluster Decision 

At the n-th CH, all  local decisions hd

njd  received from the SUs will be combined to make a 

cluster decision ,

prop

d nQ
 
as follows: 

 

1,

1,

0,

cN
hd

njprop
jd n

d
Q

Otherwise







 




                                                            (29) 

 

where 
 
is the threshold for the cluster decision. 

5.3 Global Decision 

At the FC, all cluster decisions  ,

prop

d nQ
 
received will be combined to make a global 

decision  G  about the presence or absence of the PU signal by using a -out-of-K rule as 

follows: 
 

 
, 1

1

0

1, :

0, :

K
prop

d n

n

if Q H
G

Otherwise H







 




                                                (30) 

 

where   is the threshold for the global decision. 

6. Simulation and Results Analysis 

To evaluate the performance of the proposed spectrum sensing scheme, Monte-Carlo 

simulations were carried out under following conditions: 
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• The number of SUs is 12. 

• The number of clusters is 3. 

• The number of SUs in each cluster is 4. 

• The durations of sensing, SU reproting, and CH reporting time slots are 1ms. 

• Average SNR of each SU in a cluster is -17 dB. 

• The PU signal is a BPSK signal. 

• The noise in SUs is CSCG. 

• The number of samples is 300. 

First, the sensing performance of the proposed and conventional cluster-based schemes, in 

terms of receiver operating characteristic (ROC), were evaluated under a CSCG channel. In 

this simulation, each SU conducts local sensing using equal gain combining (EGC). 

Fig. 5 and Fig. 6, repsectively show ROC curves for the proposed cluster-based schemes, 

without and with cluster reporting time (RT). The proposed scheme outperforms in detection 

of the PU, compared with the conventional scheme bacause the proposed super-allocation can 

have longer sensing time the conventional one. Test statistics Eq. (25) was considered for the 

proposed scheme without reporting time for the cluster decision. Also, test statistics Eq. (27) 

was considered for the proposed scheme with reporting time for the cluster decision. When the 

index of the cluster increases from one to three, the detection probability is increased.  

From the detection efficiency of cooperative spectrum sensing, the probability of detection 

is 0.8, and the probability of false alarm is 0.2. However, in the worst environment, we need 

the probability of detection to be more than 0.9 and the probability of false alarm to be less 

than 0.1. In the conventional scheme, we can achieve these sensing performance with a longer 

sensing time slotm but the throughput of the cognitive radio network decreases. In the 

proposed scheme, we can easily achieve more than 0.9 and less than 0.1 for the probabilities of 

detection and false alarm, respectively, because SU reporting time and CH reporting time 

merge to sense the PU signal without decreasing system throughput. 

 

Fig. 5. ROC curves of the proposed scheme without cluster reporting time where C1#, C2# and C3# 

mean the first, second and third clusters 
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Fig. 6. ROC curves of the proposed scheme with cluster reporting time 
 

Fig. 7 and Fig. 8, respectively, show ROC curves for the global decision at the FC for the 

proposed and conventional cluster-based schemes with and without cluster reporting time. The 

figures show that an OR-rule-based [25] proposed scheme can achieve the most reliable 

performance, with and without cluster RT, as well. Therefore, the OR-rule offers the best 

performances, compared with other fusion decisions (Majority-rule, AND-rule) [25]. As we 

can expect, the detection performance of the proposed scheme with cluster RT in Fig. 8 is 

better than the proposed scheme without cluster RT in Fig. 7. 

 

Fig. 7. ROC curves of the proposed scheme without cluster reporting time and the conventional scheme 
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Fig. 8. ROC curves of the proposed scheme with cluster reporting time and the conventional scheme 

 

Secondly, the simulation was carried out under conditions whereby the SNRs of the PU’s 

signal at the nodes are from -28 to -10 dB. The ROC curves of proposed scheme without 

cluster reporting time and the conventional scheme are illustrated in Fig. 9. For our proposed 

scheme, it can be seen that probability of detection increases as sensing time, 
nj

sT , increases.  

 

Fig. 9. ROC curves of the proposed scheme without cluster reporting time and the conventional scheme 

where SNRs of the PU’s signal at the nodes are from -28 to -10 dB 
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The ROC curves of the proposed scheme with cluster reporting time versus the 

conventional scheme are shown in Fig. 10. From Fig. 9 and Fig. 10, it is shown that the 

probability of detection in the proposed scheme with cluster reporting time is better than the 

proposed scheme without cluster reporting time.  

 
Fig. 10. ROC curves of the proposed scheme with cluster reporting time and the conventional scheme 

where SNRs of the PU’s signal at the nodes are from -28 dB to -10 dB 
 

In Tables 1 and 2, the exact values of detection probabilities in the proposed and conventional 

approaches are shown. The gain of sensing performance can be verified with the results. For 

example, the proposed method with a cluster reporting time can detect the spectrum with 

nearly 100% detection probability whereas the conventional one detects the PU’s signal with 

78% of detection probability in -10 dB SNR. 

7. Conclusion 

In this paper, we propose super-allocation and cluster-based cooperative spectrum sensing 

in a CR network. The proposed scheme can achieve better sensing performance in comparison 

with the conventional cluster-based cooperative spectrum sensing scheme. By re-scheduling 

the reporting time solts of SUs and CHs, a longer sensing durations are guranteed for SUs 

depending on the order of reporting times of SU and CH. With simulations, the gain of 

performance is verified. 

 
Table 1. Probability of detection (PD) without cluster reporting time under SNR 

vs. number of clusters. 

SNR -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 

Conventional 

scheme 
0.516 0.5042 0.5119 0.5248 0.5295 0.5487 0.5933 0.6286 0.6994 0.7825 

Cluster 1 0.5073 0.5122 0.5209 0.5421 0.5473 0.5775 0.6290 0.6944 0.7810 0.8776 

Cluster 2 0.5154 0.5208 0.5378 0.5533 0.5860 0.6408 0.7055 0.7973 0.9006 0.9747 
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Cluster 3 0.5149 0.5232 0.5453 0.5737 0.6061 0.6727 0.7507 0.8605 0.9528 0.9949 

Global 0.5160 0.5324 0.5682 0.5968 0.6264 0.6957 0.7733 0.8896 0.9734 0.9965 

 

Table 2. Probability of detection (PD) with cluster reporting time under SNR  

vs. number of clusters. 

SNR -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 

Conventional 

scheme 
0.516 0.5042 0.5119 0.5248 0.5295 0.5487 0.5933 0.6286 0.6994 0.7825 

Cluster 1 0.5112 0.5170 0.5207 0.5316 0.5517 0.5743 0.6342 0.6993 0.7883 0.8835 

Cluster 2 0.5135 0.5236 0.5407 0.5628 0.5882 0.6445 0.7153 0.8217 0.9206 0.9844 

Cluster 3 0.5205 0.5346 0.5474 0.5684 0.6191 0.6845 0.7728 0.8849 0.9625 0.9972 

Global 0.5261 0.5460 0.5495 0.5790 0.6327 0.6963 0.7949 0.9093 0.9722 0.9995 
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